UTC Project Information		
Project Title	MPC 486- Sustainable Heated Pavements for Infrastructure Longevity, Safety and	
	Economic Competiveness	
University	Colorado State University	
Principal	Paul Heyliger	
Investigator		
	Rebecca Atadero	
	Scott Glick	
PI Contact	Professor	
Information	prh@engr.colostate.edu	
	1372 Campus Delivery	
	Fort Collins, CO 80523	
	970-491-6685	
	Assistant Professor	
	ratadero@engr.colostate.edu	
	1372 Campus Delivery	
	Fort Collins, CO 80523	
	970-491-3584	
	Associate Professor	
	Scott.glick@colostate.edu	
	1584 Campus Delivery	
	Fort Collins, CO 80523	
	970-491-1802	
Funding	USDOT, Research and Innovation Technology Administration	
Agencies		
Agency ID or	DTRT13-G-UTC38	
Contract	DIR115-0-01050	
Number		
Project Cost	\$99,956	
Start and End	September 30, 2013 to September 30, 2018	
Dates		
Project Duration	September 30, 2013 to September 30, 2018	
Tioject Duration	September 50, 2015 to September 50, 2018	
Brief	Icing of pavements during the winter leads to problems affecting the majority of the	
Description of	USDOT's strategic goals. Icy roadways clearly pose a hazard to the <i>safety</i> of	
Research Project	drivers and vehicle occupants. Icy roads also affect economic competitiveness as	
	truck based transport of goods is slowed or interrupted. The use of de-icing agents,	
	such as salt and Magnesium Chloride, can help prevent ice build-up on the roads,	
	but bring with them significant initial and long term maintenance costs. Beyond the	
	costs associated with purchasing and applying the materials, the application of	
	chloride based agents to steel infrastructure (e.g. reinforced concrete pavements and	
	bridge decks and steel bridge components) can lead to corrosion and possible	
	premature failures. The American Society of Civil Engineers current grade of the	
	U.S. roads is a D and bridges are a C+ (ASCE 2013). The deterioration caused by	

r	
	corrosion raises technological and economic issues associated with the <i>state of good</i>
	repair goal including how to inspect, manage, and repair deteriorating
	transportation structures. The use of these chemicals to prevent icing also has
	environmental costs, relating to the goal of <i>sustainability</i> . The climate of the
	Region 8 states served by MPC means that icy roads are a national issue of great
	local significance.
	Heated pavements offer a potential solution for the problems caused by icy roads.
	New research is investigating the application of heated pavements to keep airport
	runways clear and decision making tools to help airport managers decide when the
	heated pavements or other snow clearing solutions are viable (Vigar 2013). Heating
	a full network of roads is likely not viable at this point, but the targeted heating of
	particular safety trouble spots, critical freight routes, and heavily salted areas has
	the potential to make significant contributions to the quality of U.S. and regional
	transportation networks. These networks often include generous right-of-way areas
	that may lend themselves to supporting a distributed energy producing
	infrastructure; potentially decreasing costs in remote locations. The presence of ice
	in concrete pores is a fairly well-understood process (Penttala 1998, Kauffmann
	2004) that can accelerate environmental
	degradation of pavements or other roadbases. A number of novel approaches have
	been attempted, including conductive concrete (Yehia and Tuan 1999, 2000, 2004,
	Tuan 2004), conductive asphalt (Chen and co-workers 2011), heated wiring (Tuan
	2004, Zhao and co-workers 2010) and there has been at least one full bridge
	demonstration project reported in the literature (Tuan 2008). However, there are no
	broad-based design or implementation guidelines for use of this class of technology,
	nor is there a fixed approach for powering such methods.
	Three key questions arise regarding the feasibility of a targeted heating approach:
	1) How will locations where pavements will be targeted for heating be determined
	to make substantial contributions to improving safety, movement of goods,
	longevity of infrastructure and/or impact on the environment?
	2) How will the appropriate source of energy necessary to heat the pavements be
	evaluated for each site in a sustainable manner (i.e. considering the triple bottom
	line)?
	3) What type of paving technology can be effectively heated with the available
	energy or in a way that minimizes the energy demand?
	energy of in a way that minimizes the energy demand?
	Bassanch Obiostinas
	Research Objectives: The goal of this project is to investigate the feesibility and potential herefits of
	The goal of this project is to investigate the feasibility and potential benefits of
	localized pavement heating using a prioritization tool that will target locations that
	are both high risk and located at sights compatible with novel off-grid power
	sources. To meet this goal, this project has the following research objectives:
	1. Investigate characteristics of particular roads and sites that may make them
	attractive applications for this technology.
	2. Investigate potential options for providing sustainable heating and associated
	costs.
	3. Use site characteristics and heating solutions to develop an index for
	transportation decision makers to use in identifying sites that would most benefit
	from the heated pavement while simultaneously considering the most appropriate
	power source
	4. Investigate pavement options that may provide a combination of durability and
	effective heat transmission and retention.

	5. Build numerical models that can characterize the heated materials, predict rates of heating/cooling, and be used as a design an analysis tool to modify pavement mixes or modifications in heating sources.
Describe Implementation of Research Outcomes (or why not implemented)	
Place Any Photos Here	
Impacts/Benefits of Implementation (actual, not	
anticipated)	

Web Links	
Reports	
 Reports Project Website 	
Website	