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Introduction

• After strong earthquakes (1994 Northridge) many bridges
collapse or are severely damaged

• Concentrated damage is designed to occur at the ends of columns
based on current design methodology (Plastic Hinge)

• Seismic repair of damaged columns is preferable to replacement

• Rapid construction, minimal interruption, and economy are desirable
in any repair method

• There is little research regarding repair of severely damaged RC
bridge columns of existing bridges

Introduction
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• Most existing bridges in high seismic regions are cast-in-place

• During large earthquakes the longitudinal reinforcement buckles or 
fractures and concrete crushes and spalls: repair of such damage 
involves removal of core concrete and replacement of the buckled and 
fractured steel reinforcement which requires significant time and effort

• Phase I: Repair of FOUR columns constructed with Accelerated Bridge 
Construction (ABC)

• Phase II: Repair of TWO Cast-In-Place (CIP) columns and TWO ABC 
columns [one column was separated from the cap beam] 

Introduction

Introduction
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PHASE I: Repair of Accelerated Bridge
Construction (ABC) Columns

• The use of precast bridge elements is popular for accelerated bridge 
construction

• The ability to repair 
damaged bridge  
components is a good 
alternative to replacement

• Elements with grouted 
splice sleeve connections  
are good candidates for 
repair due to localized 
damage

Experimental Program: Phase I
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Original Test Specimens (ABC)
• Description of Splice Sleeve System

– Lenton Interlock 
• Threaded bar
• Non-Shrink Grout
• Splice Sleeve

Experimental Program: Phase I
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Original Test Specimens (ABC)
• Description of Splice Sleeve System

– NMB Splice Sleeve 
• Grouted bars
• Non-Shrink Grout
• Splice Sleeve

Experimental Program: Phase I
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ABC Test Specimens

Experimental Program: Phase I
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Original ABC Test Specimen
LE-O1

- Pier cap is 
upside down

- Splice 
Sleeves are in 
the pier cap

Experimental Program: Phase I
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Material Properties

Experimental Program: Phase I
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Longitudinal rebar ratio: 1.3%

(1%-4%)

Volumetric spiral ratio: 2.0%
(>0.5%)

Experimental Program: Phase I
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Original Test Setup (Ameli et al. 2015; 2016)

EastWest

Experimental Program: Phase I
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Test Procedure
Two cycles per drift 
level
Loading rate up to 3% 
Drift Ratio:
1.2 in./min
Loading Rate after 
3% Drift Ratio:
4 in./min
The axial load was 
set to 6% of the 
column axial 
compression capacity

Experimental Program: Phase I
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Original ABC Test Specimen Results

Experimental Program: Phase I
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Damaged Original Specimens

NM-O1 (Front)          NM-O1 (Side)          LE-O1 (Front)          LE-O1 (Side)  

NM-O2 (Front)           NM-O2 (Side)         LE-O2 (Front)         LE-O2 (Side)  

Experimental Program: Phase I
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Repair Design Concept              Carbon Fiber Reinforced Polymer  (CFRP)

Pantelides et al. 1999 

Experimental Program: Phase I

CFRP
jackets
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Repair Design

Experimental Program: Phase I

Lehman et al. 2001 repaired a damaged 
column by casting a concrete jacket reinforced 
with double-headed longitudinal steel around 
the damaged region
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Repair Design Concept              Carbon Fiber Reinforced Polymer  (CFRP)

Experimental Program: Phase I

Yan et al. 2006 

CFRP jacket 
shape modificationExpansive 

Grout
Post-tensioned 
CFRP jacket
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Repair Design Concept             Carbon Fiber Reinforced Polymer  (CFRP)

Experimental Program: Phase I

Pantelides et al. 2007 

Grade beam-to-
pile connection
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Repair Design             Carbon Fiber 
Reinforced Polymer  (CFRP) Donut
(Plastic Hinge Relocation)

Parks et al. 2016

Experimental Program: Phase I

REPAIR 
CONCRETE
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Why CFRP?

• High strength
• Light weight
• Non-corrosive

Improves ductile performance
Enhances shear strength
Provides stay-in-place form

Ultimate Tensile Strength: 113 ksi 
Modulus of Elasticity: 9400 ksi 
Ultimate Tensile Strain: 1.2%     ASTM D3039

CFRP Composite

Experimental Program: Phase I
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Repair – Bending Moment Demand
(Plastic Hinge Relocation)

Experimental Program: Phase I
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Repair Procedure (Plastic Hinge Relocation)(((((((((((((((((((((PPPPPPPPPPPPPPPPPPPllllllllllllllllaaaaaaaaaaaaaaaaaaaaaaasssssssssssssssssssssssttttttttttttttttttttttiiiiiiiiiiiiiiiiiicccccccccccccccccccccc HHHHHHHHHHHHHHHHHHHHiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnggggggggggggggggggggggeeeeeeeeeeeeeeeeeeeeeeee RRRRRRRRRRRRRRRRRReeeeeeeeeeeeeeeeeeeeeeeelllllllllllllllllloooooooooooooooooooooccccccccccccccccccccccaaaaaaaaaaaaaaaaaaaaaattttttttttttttttttttttiiiiiiiiiiiiiiiiiooooooooooooooooooooooonnnnnnnnnnnnnnnnn)))))))))))))))))))))))

Headed Steel Bars        Split CFRP Shell

CFRP = Carbon Fiber 
Reinforced Polymer

Spliced CFRP Shell   CFRP Shell with Concrete Fill

Experimental Program: Phase I

REPAIR 
CONCRETE
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Phase I: 
ABC Test Results
Repair NM

Experimental Program: Phase I
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Phase I:
ABC Test Results
Repair LE

Experimental Program: Phase I
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Phase I: ABC Test Results

NM-O1                      NM-R1                  LE-O1                       LE-R1

Experimental Program: Phase I

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

ABC Test Results Repaired Specimens

Experimental Program: Phase I
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CFRP Shell Performance

NM-R2

LE-R2

Strain Profile CFRP Shell

Radial cracks in repair concrete (NM-R1)

Experimental Program: Phase I
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• Due to the lack of vertical CFRP fiber and too much expansion from 
repair concrete, circumferential CFPR wrap cracked

LE-R2 will be repaired again

Experimental Program: Phase I
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The Phase II method incorporates fibers in the hoop and vertical direction 
of the CFRP shell implemented for four severely damaged specimens:

Two columns cast-in-place (CIP) with severe damage including 
concrete crushing and longitudinal bars fractured and buckled

Two columns are precast ABC specimens:                                             

• one repaired for the second time with crack epoxy injection (PC2-O)

• one in which the column was completely separated from the cap 
beam

PHASE II: Repair of Cast-In-Place and ABC Columns

Experimental Program: Phase II
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Phase II: Original Cast-In-Place (CIP) Specimens

F-CIP-O CB-CIP-O

Experimental Program: Phase II
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Phase II: Original ABC Precast (PC) Specimens

PC1-O PC2-O

Experimental Program: Phase II
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fracture

F-CIP-O

fracture

CB-CIP-O

CIP Specimens
Severe concrete crushing 
(12 in. to 16 in. above 
interface)
Fracture of extreme bars
Buckling of extreme barsbuckling

Phase II: Original Specimen Results: CIP Specimens

Experimental Program: Phase II
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PC1-R1

PC1-O
PC1-O and PC2-O specimens

Concrete spalling (8 in. to 
12 in. above interface)
All bars pulled out
No bar fracture/buckling

Phase II Original Specimen Results: PC Specimens

PC2-O

PC1-R1 specimen
Rupture of CFRP shell
Severe extensive cracks

LE-R2

Experimental Program: Phase II
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Phase II Original Specimen Results: CIP Specimens

Experimental Program: Phase II

TEST CRITERIA CB-CIP-O F-CIP-O
MAX. LOAD (kips) 35.8 36.5
ULTIMATE DRIFT RATIO (%) 9.3 8.8
DISPLACEMENT DUCTILITY 9.9 8.9
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Phase II Original Specimen Results: PC Specimens

Experimental Program: Phase II

TEST CRITERIA PC1-O PC1-R1 PC2-O
MAX. LOAD (kips) 41.0 49.9 39.7
ULTIMATE DRIFT RATIO (%) 6.7 5.6 5.5
DISPLACEMENT DUCTILITY * 5.1 4.9

* Pre-damaged condition before testing
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• CFRP shell: 19 in. high CFRP donut 
with 30 in. diameter based on P.H. 

• Repair Concrete: 11.0 ksi  
non-shrink concrete

Six headed bars:
• 17.5 in. in the repair concrete             
• 19 in. in the footing/cap beam

Phase II: Repair Design (Plastic Hinge Relocation)

Experimental Program: Phase II

Non-shrink 
concrete
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FEM for CFRP Shell Design
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• 7H2V (Seven hoop layers and 
two vertical layers)  

ACI 440 efficiency factor of 58% for 3D FRP stresses

• Maximum hoop stress for 7H2V 
was 36.4 ksi or 55% of the allowable
CFRP ultimate stress

• The maximum hoop stress for 
the model with four hoop layers 
was 63.5 ksi or 97% of the 
allowable CFRP ultimate stress

42.3 kips

Experimental Program: Phase II
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Steel Collar Design (PC2-R) Wu and Pantelides 2018

Experimental Program: Phase II

Non-shrink 
concrete
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Rapid Construction of Repair

(a) Post-installed headed bars (b) Temporary form for CFRP wrapping

(c) CFRP shell – 7 Hoop & 2 Vertical Layers (d) CFRP shell filled with non-shrink concrete

6 hours 

1 hour 1 hour 

Total: 8 hours 

Experimental Program: Phase II
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Rapid Construction of Repair 

cap beam w/o column (PC2-R)

steel collar (PC2-R)

removal of previous CFRP donut (PC1-R2)

epoxy crack injection (PC1-R2)

0.5 hour 1.0 hour 

Experimental Program: Phase II
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Gap between column 
and CFRP donut at 
2% drift ratio

Slip of the column at 
5% drift ratio

Final damage (about 
2.5 in. inside donut)

Final damage (PC2-R): 
Concrete crushing 18 in. 
above CFRP donut; two 
extreme bars fractured

Phase II: Repair Results

PC2-R

CB-CIP-R

Experimental Program: Phase II
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Phase II: Plastic Hinge Relocation

F-CIP-RCB-CIP-R
• 14 in. to 20 in. above donut
• 2.5 in. inside donut
• No bar fractured

• 10 in. to 20 in. above donut
• No damage inside donut
• Two extreme bars fractured

PC2-RPC1-R2

Experimental Program: Phase II
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Phase II: Hysteretic Response CIP Specimens

CB-CIP
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Experimental Program: Phase II
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Phase II Original Specimen Results: CIP Specimens

Experimental Program: Phase II

TEST CRITERIA CB-CIP-O F-CIP-O CB-CIP-R F-CIP-R
MAX. LOAD (kips) 35.8 36.5 47.0 44.7
ULTIMATE DRIFT RATIO (%) 9.3 8.8 8.1 8.4
DISPLACEMENT DUCTILITY 9.9 8.9 6.8 6.0
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Phase II: Hysteretic Response PC Specimens

PC2
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Experimental Program: Phase II
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Phase II Original Specimen Results: PC Specimens

Second repair 
with crack epoxy 

injection

Repair with
steel collar

Experimental Program: Phase II

TEST CRITERIA PC1-O PC1-R1 PC1-R2 PC2-O PC2-R
MAX. LOAD (kips) 41.0 49.9 53.4 39.7 48.8
ULTIMATE DRIFT RATIO (%) 6.7 5.6 7.8 5.5 7.6
DISPLACEMENT DUCTILITY * 5.1 5.6 4.9 7.1

* Pre-damaged condition before testing
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Phase II: Repair Results

TEST CRITERIA CB-CIP-R F-CIP-R PC1-R2 PC2-R

MAX. LOAD
(kips) 45.6 43.8 53.4 43.3

ULTIMATE DRIFT 
RATIO (%) 8.1 8.4 7.8 7.6

FAILURE MODE Concrete 
crushing

Concrete 
crushing

Extreme bar 
fracture; Concrete 

crushing

Extreme bars 
fracture; 
Concrete 
crushing

DISPLACEMENT 
DUCTILITY 6.8 6.0 5.6 7.1

Second repair
with epoxy injection

Repair with 
steel collar

Experimental Program: Phase II
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Phase II: CFRP Hoop Strain Profile

PC2-RCB-CIP-R

• Top 6 in. of the CFRP shell: CB-CIP-R: STRAIN 0.2 - 0.5%; PC2-R: STRAIN 0.2%

• The CFRP shell formed an effective tension ring
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Experimental Program: Phase II
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Analytical Study
Description of Bond-slip

Analytical Models 

Comparison of Results

Analytical Study
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Description of Bond-slip

• Bond-slip phenomenon between 
longitudinal bars and surrounding 
concrete cannot be ignored 
(Eligehausen et al. 1982; Harajli 2009) 

• Bond-slip deformation occurs either in  
pullout mode or a splitting mode

For concrete not well confined bond 
failure occurs in a splitting mode

• Bond slip affects global response by 
reducing stiffness and strength

Pullout mode Splitting mode

Analytical Study
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CEB-FIB Model Code 2012

Analytical Study

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Analytical Models

Model Fiber
• Distributed plasticity 

considering bond slip 
concentrated in 
plastic hinge length

• Using the 
BeamWithHinges
element for column

Wu and Pantelides 2018

Analytical Study
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Considering Initial Damage
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Analytical Study
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Schematic of Bond-slip Model
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Analytical Study
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Analytical Models

Model RS

• Concentrated plasticity 
in non-linear moment 
rotational spring

• Using Hysteretic
material to define 
spring

Wu and Pantelides 2018

Analytical Study
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Moment-rotation Relationship

Moment-rotation curve 
based on existing models 
(Haselton et al. 2016) 

Analytical Study
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Calculation of Moment-rotation Relationship

• Sectional analysis to get 
moment-curvature

• Considering steel strain 
and bond strength to 
get rotation

Adapted from Wehbe et al. 1999

= 

c

d

Analytical Study
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Comparison of Results: Specimen CB-CIP-R

Test vs Model Fiber Test vs Model RS
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Analytical Study
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Comparison of Results:  Specimen PC2-R

Test vs Model Fiber Test vs Model RS
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Analytical Study
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Comparison of Results: Hysteretic Energy
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Analytical Study
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Retrofit of Bridge
As-built multi-column bridge bent

Practical design of CFRP donut

Nonlinear pushover analysis

Nonlinear time-history analysis

Retrofit of Bridge
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As-built multi-column bridge bent 

Pantelides et al. (1999)

Retrofit of Bridge
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Schematic of bridge bent

Wu and Pantelides 2019

Retrofit of Bridge
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Soil-structure interaction (SSI)
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Retrofit of Bridge
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Material constitutive models

Rebar buckling was 
considered (Dhakal and Maekawa 2002)
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Practical Design of CFRP Donut
Strut-and-tie model (STM)Brown et al. 2016

Wu and Pantelides 2019

Retrofit of Bridge
34



DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Benefits:
1. No need to analyze whole 

structure to get STM
2. Only lateral force and tension 

force from headed steel bars 
required

3. Convenient and practical for 
designers

Retrofit of Bridge

Wu and Pantelides 2019
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Final Retrofit Design

Retrofit of Bridge
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Design of CFRP Donut

(42 in.)

(54 in.)

Note: 1 in. = 25.4 mm
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Pushover Analysis
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Idealized Pushover Curves
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Displacement 
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Probabilistic Analysis (DBE and MCE levels)
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22 far-field ground 
motions were selected 
from PEER
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Nonlinear time-history analysis
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Nonlinear time-history analysis
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Definition of damage states     (Mander et al. 2007)

Retrofit of Bridge

Damage 
state Damage descriptions Drift ratio limits (%)

DS-1 None Pre-yielding 0.0
DS-2 Minor/slight Minor spalling 0.5
DS-3 Moderate Bar buckling 1.9
DS-4 Major/extensive Bar fracture 5.1
DS-5 Complete/collapse Collapse 6.2

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Definition of limit states (Kowalsky 2000)

Limit State

Strain Limits
Drift Limits 

(%)
Concrete 

Compression Strain
(%)

Steel 
Tension Strain

(%)

Operational 0.4 1.0 (Beam)
1.5 (Column) 0.5

Life Safety 1.8 6.0 1.5

Near Collapse - - 2.5

Retrofit of Bridge
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Cumulative Distribution Function (CDF)
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Conclusions

1. Seismic rehabilitation method with CFRP composites in hoop and vertical 
directions with headed steel bars and nonshrink concrete for plastic hinge 
relocation - steel collar with shear studs implemented  

2. Method restored strength and displacement capacity successfully for 
severely damaged concrete columns {concrete crushing and longitudinal steel 
bar fracture and buckling}

3. Two analytical models (Model Fiber and Model Rotational Spring) were 
developed with bond-slip effects, effects of previous loading history, cyclic 
degradation of column steel bars

4. Future modeling recommendation: both analytical models should be used to 
determine range of structural responses and obtain lower bound estimate of 
load and displacement capacity 
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Conclusions 

5. Analytical model with consideration of soil-structure interaction (SSI) was     
effective and reproduced experiments from in-situ tests - simplified springs 
were used to model soil-structure interaction

6. Proposed rehabilitation method using CFRP donuts and CFRP jackets was 
employed to retrofit as-built bridge bent - based on pushover analysis 

7.  Rehabilitation method increased lateral load capacity and elastic stiffness

8. Simplified design guidelines of proposed repair method were developed 
using strut-and-tie model (STM)
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