EXAMPLE 2 A partnership with MDT·NDDOT·SDDOT·WYDOT and the Mountain-Plains Consortium Universities Welcome! Self-Consolidating Concrete for Prestressed Bridge Girders

Junwon Seo

Our partners:

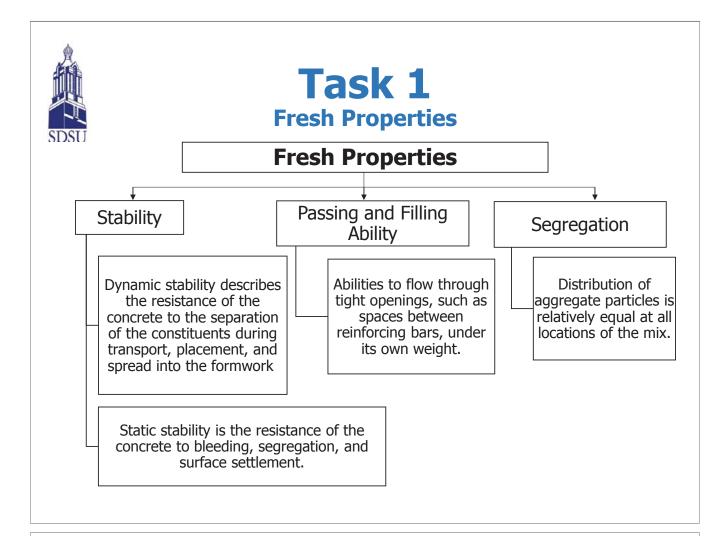
UPPER GREAT PLAINS TRANSPORTATION INSTITUTE TRANSPORTATION LEARNING NETWORK

Self-Consolidating Concrete for Prestressed Bridge Girders

Junwon Seo, PhD, PE, M. ASCE, M. PCI, M. ACI Assistant Professor and Chairman of ASCE Timber Bridges Committee Associate Editor for ASCE Journal of Performance of Constructed Facilities South Dakota State University

Presentation Outline

- 1. Project Objectives
- 2. Project Tasks
- 3. Conclusions
- 4. Recommendations
- 5. Future Work


Project Objectives

- 1. To develop a SCC mix design guideline for the use of SCC in PSC girders on WisDOT bridge projects
- 2. To examine effects of various SCC mixture constituents on the material characteristics
- 3. To investigate structural behavior of a full-scale prestressed SCC girder

Project Tasks

- 1) Task 1: Literature Review (DOTs' Survey)
- 2) Task 2: SCC Material Supplier Identification
- 3) Task 3: SCC Material Testing
- 4) Task 4: SCC Mix Design Guideline Development
- 5) Task 5: SCC Girder Implementation

Task 1 Strength

Strength Features:

- SCC has shown higher strength than normal concrete.
- Cement content, w/c ratio, and coarse aggregate are the constituents that have more influence on the compressive strength.
- SCC mixtures using limestone fillers have shown substantial higher strength than other mixtures.
- SCC shows a slower growth on strength compared to normal concrete.

Shrinkage Features:

- Several studies have shown that normal concrete exhibits higher strain changes than SCC.
- Types of Shrinkage:
 - Plastic shrinkage.
 - Autogenous shrinkage (lower for SCC).
 - Drying shrinkage (higher for SCC).
- Causes of Shrinkage:
 - Low aggregate content.
 - High water cement ratio.
 - Usage of HRWR.

Task 1 Creep

Creep Features:

- Studies show that SCC may experience 10-20% more strain than high performance concrete.
- Creep behavior is affected by the compressive strength, coarse aggregate and cement type.
- W/c ratio does not seem to have an effect on creep.
- Reasons:
 - SCC with high paste volumes.
 - Low stiffness from aggregates.
 - Binder content and binder type.
 - Loading applied at sample age.

State	Survey	SCC	Research
State	Y/N	Specifications	Report
Alabama	Y	Y	
Florida		Y	Y
Georgia		Y	Y
Illinois		Y	Y
lowa	Y		
Kentucky		Y	
Louisiana		Y	
Michigan		Y	Y
Minnesota	Y	Y	Y
Nebraska	Y	Y	Y
New York		Y	
North Carolina	Y	Y	Y
Ohio	Y		
Pennsylvania	Y	Y	
Rhode Island	Y	Y	
South Carolina	Y	Y	Y
South Dakota	Y	Y	Y
Texas	Y	Y	Y
Utah	Y	Y	
Washington	Y	Y	

Task 1 DOT Survey

Q1: Does your state have specific mix parameters for the application of Self-Consolidating Concrete (SCC)? If yes, for what applications have SCC been used? (E.g. girders, box culverts, etc.)

Q2: Describe the following materials if used:

- a. Type of cement used b. Cementitious materials used:
- c. Coarse Aggregate/Size d. Fine Aggregate/Size:
- e. Admixtures Used.
- Q3: Select Test Methods used and include accepted range of values.
- **Q4:** Does your state have either past or ongoing research on SCC.
- Q5: What is research plan for SCC characteristics and applications?

Task 1 DOT Survey-Example (Virginia DOT)

Q1: The mix parameters shall be designed with the same parameters as the class of concrete, with a different slump requirement and different admixtures. It is used currently in bridges, beams, drilled shafts, prestressed beams, and precast items.

- **Q2:** a. Type of cement: Type III.
 - b. Other cementitious materials: None.
 - c. Coarse aggregate: Max ³/₄". Not < ³/₄ minimum clear space.
 - d. Fine aggregate: no requirements.
 - e. Admixtures:-VMA: Must meet ASTM C494.
 - -Shrinkage reducing admixture.
 - f. Max w/c: 0.45.

Task 1 DOT Survey-Example (Virginia DOT)

- Q3: a. Slump Flow: 26 +/- 3 in (ASTM C1611).
 b. J-Ring Flow: <= 2 in difference from slump flow.
 - **c.** Column Segregation: 15% max.

d. VSI: <= 1.

- e. Compressive Strength: 4000 psi at release. 6000 psi at 28 days.
- **f.** Permeability: Coulomb requirements depend on the design.
- **Q4:** Yes, our research council (VCTIR) at the University of Virginia uses SCC on several projects.
- **Q5:** VCTIR recently used SCC in pier caps for bridges. The research project has been successfully done thus far at Nimmo Parkway in Virginia Beach.

Æ	
SE	SU

Task 1 DOTs' Survey

			Juity		
State	Slump Flow	J-RIng	VSI	L-Box	Column Segregation
Alabama	25-29"	±3"	0-1	NA	NA
Florida	27 ±2.5"	±2"	0-1	NA	Max 15%
Georgia	Min 20"	NA	Na	Min 0.8	NA
Illinois	20-28"	Max 4"	0-1	Min 0.6	Max 15%
Iowa	Max 27"	NA	NA	NA	NA
Kentucky	Provide Spi	read Limits, Pro	oduction Records a	nd Quality C	ontrol Procedures.
Louisiana	20"-28"		Provide Aggre	egate Gradati	ons
Michigan	27" ±1"	±0.6"	0-1	Min 0.8	NA
Minnesota	Max 28"	±2"	0-1	NA	NA
Nebraska	ASTM C1611	NA	ASTM C1611	NA	NA
Nevada			No specific guidel	ines.	
New York	±2" Target	±2"	0-1	NA	Max 15%
North Carolina	24"-30"	±2"	NA	Min 0.8	NA
Ohio	27±2"	NA	NA	NA	NA
Pennsylvania	20''-30''	±2"	0-1	NA	NA
Rhode Island	20"-26"	±2"	NA	NA	NA
South Carolina		Precasters in	n the state are hesi	tant in using	SCC.
South Dakota	20"-28"	±2"	0-1	NA	NA
Texas	22"-27"	±2"	0-1	NA	Max 10%
Utah	18"-32"	±1"	0-1	NA	Max 10%
Virginia	26"±3"	±2"	0-1	NA	Max 15%
Washington	±2" Target	±1.5"	0-1	NA	Max 10%

Task 1 Requirements for SCC Mix

1) Strength [WisDOT]:

- Initial: 6800 psi
- 28 days: 8000 psi

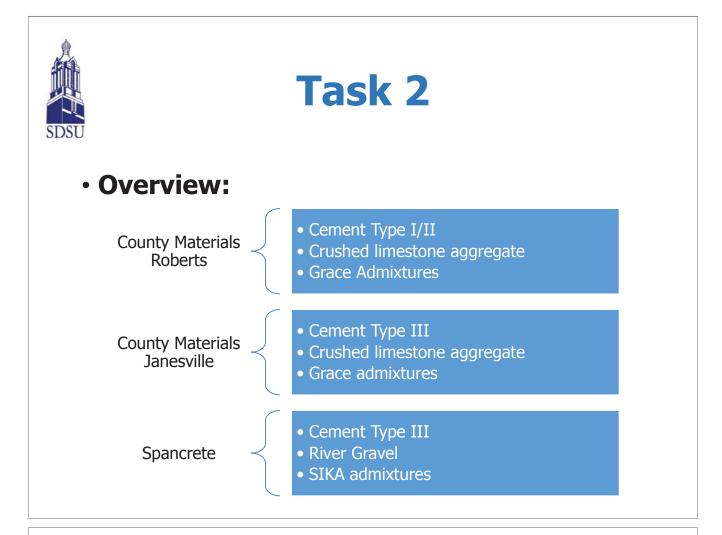
2) Cement [DOT Surveys]

Portland Cement Type III (Minimum 720 lbs/cubic yards)

3) Aggregates [WisDOT]:

- Maximum content of sand is 50% of coarse total aggregate.
- Aggregate gradation: AASHTO No. 67 Stone.

4) Water Cement Ratio [DOT Surveys]:


• Less than 0.40.

5) Air-Entraining [DOT Surveys]:

• Air entrainment of 6%(± 2%).

6) Other Requirements:

• Transport, placement and finishing requirements.

Task 2 Material Identification

Supplier I: County Materials in Wisconsin

- 1. Contact Person: Ziad Sakkal/Brian Rowekamp
- 2. Materials to be used:
 - LaFarge Type III LA Cement (Janesville)
 - LaFarge Davenport Type I/II (Roberts)
 - Aggregates:
 - □ Fine Aggregate: Glacier Sand.
 - □ Coarse Aggregate: ³⁄₄" and 3/8" limestone
 - Admixtures provided by Grace:

 - □ HRWR

Task 2 Material Identification

Supplier 2: Spancrete in Wisconsin

- 1. Contact Person: Paul Staroszczyk and Forrest Brunette.
- 2. Materials to be used:
 - St. Marys Type III.
 - Aggregates:
 - □ Fine Aggregate: Evenson Sand.
 - □ Coarse Aggregate: Evenson Stone (River Gravel).
 - Admixtures provided by SIKA:

 - HRWR

Task 3

Phase 1: Lab Testing

- Fresh Properties: Slump Flow, J-Ring and Column Segregation
- □ Compressive Strength: 18 hours and 28 days of curing

Phase 2: Plant Testing

- □ Creep Test
- Shrinkage Test

Slump Flow Set up

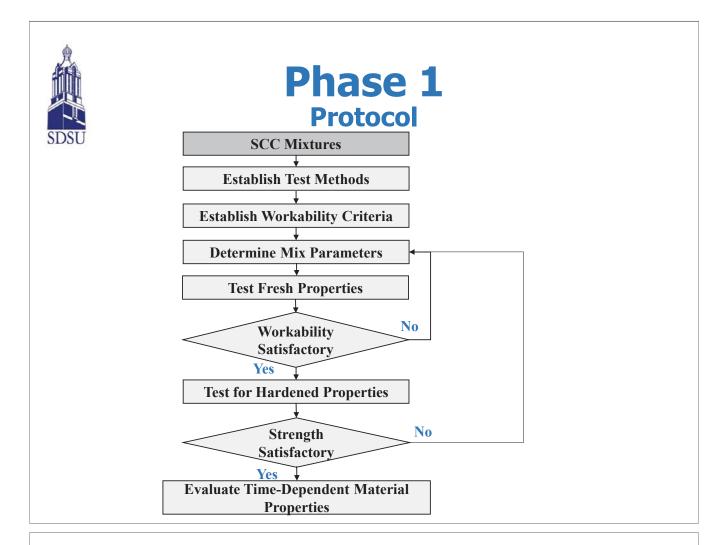
Slump Spread

Phase 1 Test Methods

J-Ring Set Up

Column Segregation Set Up

Sliding Board to Collect Top Part



Phase 1 Test Methods

Phase 1 Mixture Requirements

- 1. Cement Content: 800 lbs. per cubic yard
- 2. S/Agg: 0.5
- 3. Water cement ratio: 0.35
- 4. Blend ³/₄" and 3/8" coarse aggregates.
 - Find optimum blending configuration.
 - 20% variation of 3/8"
- 5. Cement Type
 - Type I/II: County Materials Roberts
 - Type III: County Materials Janesville

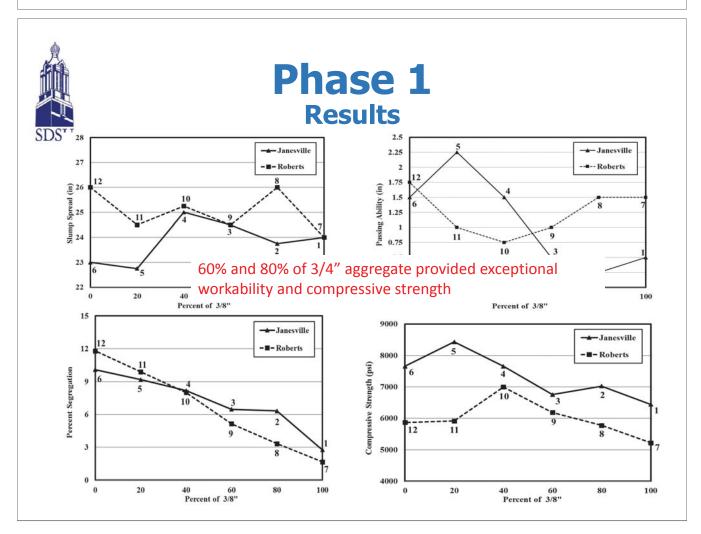
Note that mixtures of Spancrete were not used for the initial investigation due to a lack of materials from the precastor.

Phase 1 Criteria

Fresh Properties Tests	Acceptable Range	Target Value
Slump Flow	22" – 28"	25″
J-Ring	Max 2"	Max 2"
Column Segregation	≤ 15 %	Close to 10 %
T ₂₀	3-10 sec	<6 sec
VSI	≤ 1	≤ 1
Compressive Tests	Target s	trength
Strength	6800 psi (
	8000 psi	(28 days)

Phase 1 Test Matrix

lant	Plant	Mixture No		Ag	gregate	Size (3/	′8″)		Cemen	t Type	w/c	S/Agg
•		Mixt	100%	80%	60%	40%	20%	0%	Type III	Type I/II	0.35	0.50
		1	Х						Х		Х	Х
٩	U	2		Х					Х		Х	Х
Janesville		3			Х				Х		Х	Х
a De		4				Х			Х		Х	Х
	ň	5					Х		Х		Х	Х
		6						Х	Х		Х	Х
		7	Х							Х	Х	Х
	0	8		Х						Х	Х	Х
e L	5 U	9			Х					Х	Х	Х
Roberts		10				Х				Х	Х	Х
		11					Х			Х	Х	Х
		12						Х		Х	Х	Х



Phase 1 Results

Ű				Janesv	ille Type I	II (Cemen	t Content	800lbs)	
	No.	Percent of 3/8"	HRWR oz/cwt	VMA oz/cwt	Slump (in)	T20 (s)	J-Ring (in)	Column Segregation (%)	18hrs Compressiv e Strength (psi)
	1	100	5	1	24	9.4	24.5	2.76	6442
	2	80	5.5	1	24	7.54	24	6.32	7027
	3	60	6	0	24.5	12	25	6.47	6756
	4	40	5	1	25	9	23.5	8.17	7658
	5	20	5.5	1	22.75	10.6	25	9.18	8432
	6	0	5	2	23	7.32	24.5	10.1	7049

Roberts Type I/II (Cement Content 800lbs)

No.	Percent of 3/8"	HRWR (cwt)	VMA (cwt)	Slump (in)	T20 (s)	J-Ring (in)	Column Segregation (%)	18hrs Compressiv e Strength (psi)
7	100	5	0	24.5	10	22.5	1.67	5221
8	80	6	0	26	7	24.5	3.33	5521
9	60	5	0	24.5	9	23.5	5.15	6187
10	40	6	1.5	24.75	3.4	23.5	8.01	7113
11	20	5	1.5	24.5	4.9	24	9.9	5918
12	0	5	2	26	5.71	24.25	11.8	5870

Phase 1 Additional Testing Results

	Roberts													
No.	Mixture Code	%= 3/4"	HRWR	VMA	Slump Flow	T20	J-Ring	Column Segregation (%)	Air	Temp.	Compressiv (p	ve strength si)		
			Oz/cwt	Oz/cwt	(in)	(s)	(in)	(70)	%	(F°)	18 hr.	28 days		
1	CR-800-0.50-0.33	60	6	1.5	24.75	3.4	23.50	2.1	2.2	83	7113	8750		
2	CR-800-0.45-0.33	60	5	2	24.6	3.6	23.75	10.2	1.9	80	6959	10393		
3	CR-800-0.50-0.33	80	5	1.5	24.5	4.9	24.00	9.9	1.8	82	7135	9994		
Janesville														
4	CJ-800-0.50-0.35	60	3.5	3	24.75	3.9	23.50	2.8	2.2	87	6932	10164		
5	CJ-750-0.45-0.35	60	4.5	2.3	24.75	5.2	24.00	4.8	2.1	82	6957	9877		
6	CJ-800-0.50-0.35	80	3.5	3.5	25.25	4.8	24.50	4.3	1.9	84	7049	9427		
7	CJ-800-0.45-0.35	80	4	2.5	25.00	4.6	24.00	6.4	1.8	76	6994	9242		
					Spancre	ete								
8	SP-800-0.50-0.35	60	3	1.5	25.75	6.11	23.5	2.3	2.1	81	6736	8307		
9	SP-800-0.45-0.35	60	4	2	25.25	5.83	23.75	5.7	2.0	81	6923	8931		
11	SP-750-0.45-0.35	60	3	2	24.5	5.34	22.25	2.5	2.1	82	6709	8516		
12	SP-800-0.50-0.35	80	3	2	26.25	3.11	24.5	12.1	2.4	84	6862	9076		

Phase 2

• Overview:

- a) Each plant tested the mixtures selected (1, 2, 4, 6 and 9) and adjusted the admixtures dosage to improve the workability between December, 2015 and January, 2016.
- b) We visited each plant on February 9-12, 2016. Fresh properties tests were performed at each plant for the selected mixtures.
- c) Creep and shrinkage samples were cast and transported to SDSU facilities to monitor changes in strain for a period of a year.

Roberts:

a) SCC Placing

c) Column Segregation

b) Slump Spread

d) SCC Cylinders

e) J-Ring Test

Phase 2

Janesville:

a) Slump Spread

c) Column Segregation

b) J-Ring Test

d) Aggregate washing

e) SCC showing segregation

Spancrete:

a) J-Ring Test

c) Drying the aggregate

b) Column Segregation

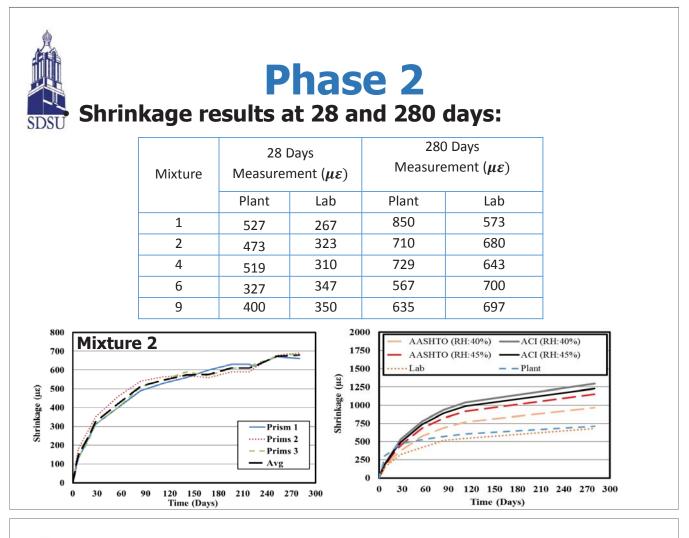
d) Preparing Shrinkage Prisms

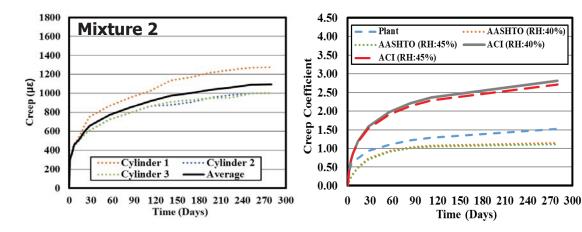
e) Shrinkage Prisms

Phase 2

Result Summary:

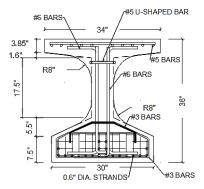
No	Mixture	Flow VST		VMA	Flow	VSI		J-Ring	Column Segregation	Air %	Temp.	Unit Weight	Compressive strength (psi)	
			(IN)	(%)	%	(F°)		18 hr.	28 days					
	County Materials Roberts													
1	CR-800- 0.50-0.33	60	10	2.5	28.5	1	2.2	28.5	4.15	0.9	80	151.0	4293	11619
2	CR-800- 0.45-0.33	60	10	3	25.5	0.5	2.8	24.75	0.85	1.7	78	151.4	5915	13050
					C οι	inty M	lateri	ials Ja	nesville					
4	CJ-800- 0.50-0.33	60	7.40	3.20	25.5	1	2.4	24.75	10.8	1.6	69	147.8	6095	12445
6	CJ-800- 0.50-0.33	80	7.50	3.75	26.2 5	1.5	2.0	26.12	7.7	1.1	70	149.4	4740	12697
						:	Span	crete						
9	SP-800- 0.45-0.33	60	14	0	23	0	4.96	20	5.6	2.6	65	156.2	9149	11720

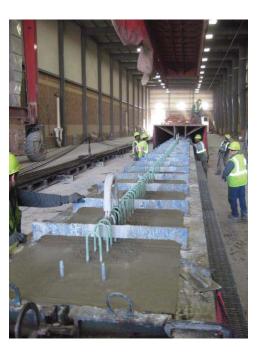




Creep results up to 280 days:

Time	Creep strain on SCC mixtures (με)									
Time	Mixture 1	Mixture 2	Mixture 4	Mixture 6	Mixture 9					
28	700	670	861	832	875					
56	836	789	973	947	1012					
84	920	876	1064	1066	1107					
112	1001	925	1117	1144	1180					
280	1203	1094	1278	1306	1440					



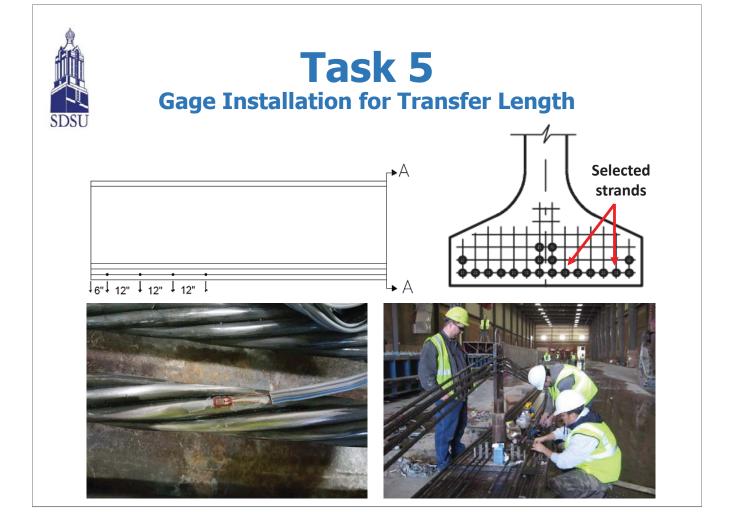

Task	
CC Mix Design	
A MARKED AND A MERINA CONTRACT OF A	
 Self-Consolidating Concrete (SCC) Specification Description: This section consists of requirements regard 	ing SCC mixture design and test methods
for prestressed bridge girders fabrication.	
1.2 Materials: Materials shall follow section 501.2 of the W proposed mix design should be submitted for approval b determine the proportions of the mix with the following l	efore application. The contractor should
Water cementitious material ratio, w/cm	.0.35 or less
Cement content	
Sand to Aggregate ratio, S/Agg	
Coarse Aggregate:	
Size	
Blending	
Admixtures	
Air content:	
Prestressed bridge girders	2.0-4.0 percent maximum
	I I I I I I I I I I I I I I I I I I I
1.3 Test Methods: To approve a new SCC mixture test Slu (VSI), T50, and Column Segregation. Once a mixture ha Ring and VSI values for every batch to ensure consistence	is been approved, record Slump Flow, J-
1.3.1 New Mixtures	
(1) Situm Flow Test: Perform Slump Flow Test followin should be between 25". 28". If slump flow value is value of the contractor for slump flow shall be recommended to range between 2-7 seconds.	above 28" reject the mixture. The target
(2) VSE 0-1.	
(3) J-Ring: Perform the J-Ring Test in accordance to AST be within ±2" difference compared to slump flow dia	
(4) Column Segregation: Perform the Column Segreg guidelines. The percent segregation should not exce twice allowing the concrete to sit on the cyl	eed 15%. This test should be performed
1.3.2 Approved Mixtures	
	Column Segregation to the DOT quality

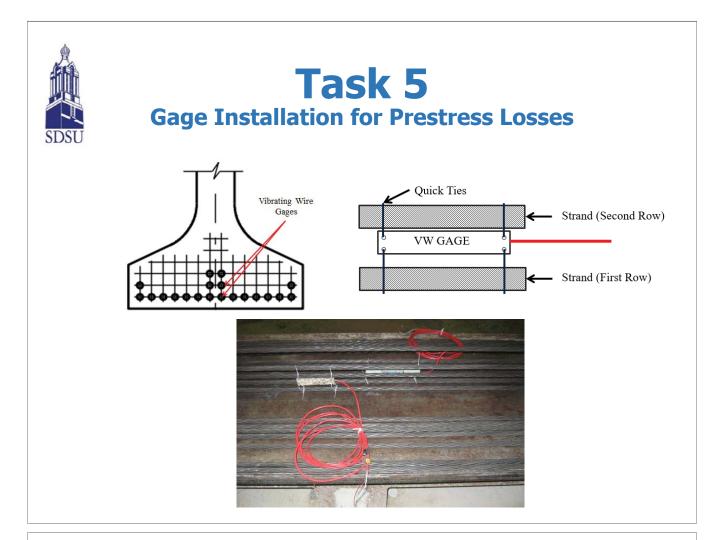
Task 5 Overview

- Mixture 4 selected amongst mixtures 1, 2, 4, 6, and 9.
- Bridge (B-40-858) selected for SCC girder implementation. This bridge has girders 36W.

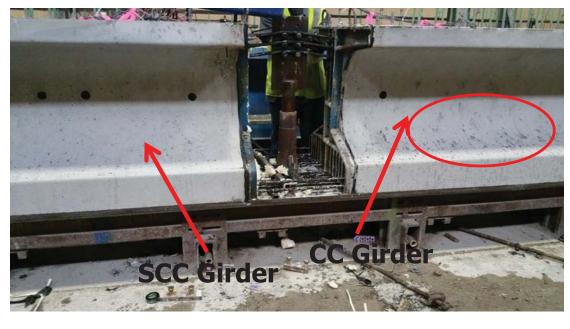
- The table were combined creep and shrinkage from the creep testing
- Selecting Mix 4 and 9 was a reasonable choice for full-scale testing because the first and second highest creep and shrinkage strains, resulting in the significant amount of prestress losses (CMJ offered to fabricate the girder, so final selection should be between mix 4 and 6.)

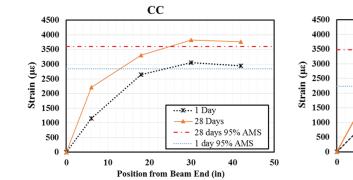
	Creep and shrinkage at 28 days												
		Creep	(με)	S	Shrinkage (με)								
No	Cylinder	Cylinder	Cylinder	Ave.	Prism	Prism	Prism	Δικο					
	1	2	3	Ave.	1	2	3	Ave.					
1	817	666	616	700	560	440	580	527					
2	756	612	620	670	460	500	460	473					
4	831	814	939	861	525	580	450	519					
6	793	765	919	832	280	400	305	327					
9	797	762	1065	875	430	370	-	400					

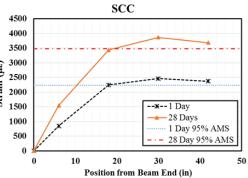

Task 5 Girder Mixture Details


Material Constituent	CC Girder	SCC Girder
Cement (lbs/yrd ³)	752	800
Fine Aggregate (lbs/yrd ³)	1402	1503
Coarse Aggregate (3/8) (Ibs/yrd³):	-	616
Coarse Aggregate (3/4) (lbs/yrd ³):	1831	905
Water (Gallons):	29	31.6
ADVA Cast 575 (oz/cwt):	-	12.5
VMA-3R (oz/cwt):	-	4.1

- Measure transfer length in a SCC and normal concrete girder.
- Measure prestress losses induced by creep and shrinkage effects.
- Measure camber changes.

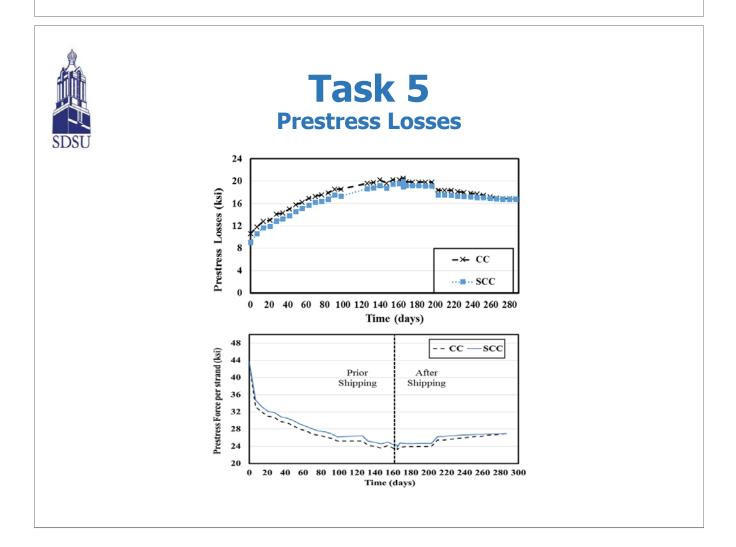

Task 5 SCC Mix Quality Control


Task 5 Girder Implementation



Task 5 Transfer Length Result

Time	South End CC (in)	North End SCC (in)	AASHTO (60d _b) (in)	ACI (50d _b) (in)
1 Day (After release)	24.0	19.0	36	30
28 Days	24.5	20.0	50	



Task 5 Prestress Losses

Time	CC (ksi)	SCC (ksi)	Type of Losses	
1 Day (Immediately after release)	10.61	9.07	Elastic Shortening	
Day 7	11.85	10.59	Creep, Shrinkage and Relaxation of the Strands (component-level)	
Day 161	20.29	19.55		
Before Shipping	20.26	19.76	During Construction	
After Shipping	20.58	19.97		
After Placement	20.03	18.97		
After Deck Placement	18.36	17.54		
Day 203	18.34	17.49	Creep, Shrinkage and Relaxation of the Strands (bridge system-level)	
Day 287	16.87	16.82		

Time	CC Girder (in)	SCC Girder (in)
Day 1	0.62	0.50
Day 28	1.0	1.25
Day 91	1.25	1.63
Day 161	1.38	1.63

Conclusions Material Lab Testing

- Slump flow results showed that, between all twelve mixtures, a range of 22.8 in to 26 in was found.
- The majority of the mixtures were less than the maximum passing ability (2 inch), excluding mixture 5 consisting of 20% of 3/8 in coarse aggregate.
- All the mixtures satisfied the required segregation percentage (15%), and the percent segregation decreased as the percentage of 3/8" coarse aggregate increased.
- Compressive strength of all the mixtures ranged from 5221 psi to 8432 psi where one half of the mixtures (mixtures 2, 4, 5, 6, 10, and 11) exceeded the required compressive strength.

Conclusions Material Plant Testing

- The fresh and hardened properties of all the mixtures for Roberts are acceptable based on the requirements.
- The performance was consistently acceptable among all Janesville mixtures in terms of the fresh and hardened properties.
- Passing ability of all the Spancrete mixtures were not as optimal as those obtained from the mixtures from Roberts and Janesville plants. For hardened property, mixtures 8 and 10 did not reach the required compressive strength at 18 hours.

Conclusions Creep Testing

- Creep behavior for the three cylinders of each mixture was generally similar, although each mixture had different creep values.
- Mixture 9 exhibits the highest creep strain with a value of 1440 microstrain, while mixture 2 exhibited the lowest creep showing 1094 microstrain.
- The creep model specified by the ACI code overestimated creep coefficients for all the five mixtures, while the AASHTO model slightly underestimates them.

Conclusions Shrinkage Testing

- The shrinkage values for all the mixtures ranged from 470 to 900 microstrain at 280 days.
- The AASHTO model provided a more accurate prediction of shrinkage at the end of 280 days for all the mixtures compared to the ACI model.

Conclusions Prestress Losses

- Elastic shortening for the SCC girder was 9.07 ksi, while the CC girder was approximately 17% larger with a value of 10.61 ksi.
- The final prestress loss for the SCC girder was 8.53 ksi, a near 33% higher value than that of CC girder equal to 6.42 ksi.
- Construction losses were 2.22 ksi for the SCC girder and 1.90 ksi for the CC girder.
- The total prestress losses experienced by each girder were 16.89 ksi for the SCC girder, and 17.03 ksi for the CC girder.
- The prestress losses continued to climb until day 161, which is when the girders were shipped and placed on site, at which point the losses slowly started to decline until the final recording day 287.

Conclusions Transfer Length

- Immediately after release, the transfer length was 19.0 inches for the SCC girder and 24.0 inches for the CC girder.
- At 28 days, the transfer length increased for both girders. The SCC girder increased 1 inch to a final value of 20.0 inches, while the CC girder increased 0.5 inches to a final value of 24.5 inches.
- Because the AASHTO and ACI specified a transfer length of 36.0 and 30.0 inches, respectively, both the codified formulas to determine the transfer length for each of the test girders were considered sufficiently conservative.

Conclusions Camber

- The variation in camber was 1.63 inches for the SCC girder and 1.38 inches for the CC girder.
- A final reading for each girder was recorded at 4.5 inches, however this value for the SCC girder at day 91, while the CC girder didn't reach this until day 126.
- The SCC girder climbed to a peak camber faster than the CC girder, which started with a higher value, but took longer to reach its peak.

Recommendations

- WisDOT should allow the implementation of prestressed SCC bridge girders.
- Mixture 4, where its material and structural performance was validated throughout this project, should be accepted by WisDOT for girder production without repeating all the testing provided in the proposed SCC mixture design specification.
- Special provisions should be developed to set performance requirements for the fabrication of prestressed bridge girders.

Recommendations (Cont.)

- Investigation of the implementation of supplemental cementitious materials to reduce the costs of SCC mixtures should be made to make it more feasible for local producers.
- Monitoring of larger full-scale SCC girders is recommended to obtain valuable information of long-term structural behavior of SCC girders.

Future Work

- Modifying SCC mixture designs for a better control of creep and shrinkage.
- Investigating shear strength of prestressed SCC bridge girders with different prestressing forces and making relevant design recommendations.
- Establishing a comprehensive prestressed SCC bridge girder design guideline by performing representative load testing on a full-scale SCC girder and a parametric study with variation in girder size, strength, prestressing force, and loss.

Future Work (Cont.)

- Examining long-term structural behavior of prestressed SCC girder bridges under service loads using a structural monitoring system.
- Determining live load distribution factors (LLDFs) of prestressed SCC girders considering its prestress loss over time and developing reliable LLDFs formulas that are compatible to those specified by the AASHTO.

Acknowledgements

- Wisconsin DOT Grant: 0092-15-03
- Mountain Plains Consortium (MPC): MPC-502
- Graduate Students: Eduardo Torres and William Schaffer
- Project Oversight Committee (POC): Mr. William Oliva, Mr. James Parry, Dr. Michael Oliva, Mr. Steve Doocy, Mr. Ali Soleimanbeigi, Dr. Al Ghorbanpoor, Mr. Tim Holien, and Ms. Rita Lederle
- Civil Engineering Department at University of Wisconsin Madison and South Dakota State University
- Collaboration: County Materials and Spancrete

Questions/Suggestions

TRANSPORTATION LEARNING NETWORK

A partnership with MDT•NDDOT•SDDOT•WYDOT and the Mountain-Plains Consortium Universities

Thank you for participating!

You will be automatically directed to a short survey, please take a moment to provide your feedback.

Transportation Learning Network Contact Information

TLN Help Desk

Office: (701) 231-1087 shannon.l.olson@ndsu.edu

Office: (701) 231-7766 susan.hendrickson@ndsu.edu

