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Concrete Wall Piers

Bridge built with Concrete Wall Piers in Utah 

Concrete Wall Pier 
DDeficiencies

• Constructed prior to AASHTO 
Bridge Design Code in 1970’s

• Designed to support gravity loads

• Not design for seismic loads
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Test 1: As-Built Concrete Wall Pier

As--Built Concrete Wall Pier 
DDeficiencies

• Steel Reinforcing Ratio
• Lap-Splices of Longitudinal 

Reinforcement 

• Seismic Hooks
• Plastic Hinge Confinement
• Bar Spacing
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As-Built Wall Pier

As-built (AB) specimen dimensions and steel reinforcement: 
cross sectional details at lap splice region

As-Built Wall Pier

• Half-scale specimen of actual wall pier
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Test Set--Up

• Quasi-Static Cyclic Testing

Cyclic Loading

• Displacement Based Loading Protocol
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Static Pushover Analysis

• Static Pushover analysis – To estimate the displacement and 
load carrying capacity of the seismically deficient structure

• Non linear Fiber model developed in OpenSees

As--Built Wall Results

FFailure Mode: Lap-Splices

Spalling at 4% drift of as-built wall pier
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As-Built Wall Results

• Energy: 500 kip-in. (56.5 kN-m)
• Drift: 6.0% (5.76 in. (146.3 mm))

Failure Mode: Lap-Splices

As--Built Wall Results

FFailure Mode: Lap-Splices

As-built wall pier strain in lap-spliced bars
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Comparison of Model versus As-Built Wall Pier

Test 2: Modern Code Compliant Concrete Wall 
PPier
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Modern Code Compliant Wall Pier

Modern Code Compliant Wall Pier

Modern code compliant wall pier reinforcement
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Modern Code Compliant Wall Pier

MCC specimen damage

Modern Code Compliant Wall Pier

Hysteresis of modern code compliant specimen
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Modern Code Compliant Wall Pier

OpenSees fiber model of modern code compliant concrete wall pier

Modern Code Compliant Wall Pier

Comparison of the analytical pushover with experimental results
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MModern Code Compliant Wall Pier

Hysteresis comparison: OpenSees cyclic load analysis with experimental results

Retrofit Methods

HHow do we fix the deficiencies of the    
As-built Wall Pier before an earthquake 

occurs?

Carbon Fiber Reinforced Polymers (CFRP)
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Properties of Carbon Fiber Reinforced Polymer 
(CFRP)

• Light Weight

• Corrosion Free

• Higher Tensile Strength than Steel

• Can be molded to any shape

• Lower modulus of elasticity than steel

CFRP Anchor

CFRP Sheet
(Laminate)

TABLE 1. CFRP Anchor Properties 

Properties Average Values 

Tensile Strength  1,138 MPa (165 ksi) 

Tensile Modulus 103 GPa (15 x 103 ksi) 

Tensile Elongation 1.10% 

Diameter 19 mm (0.75 in.) 

 

Carbon Fiber 
Reinforced 
Polymer 
Anchors
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Carbon Fiber 
Reinforced 
Polymer 
Near Surface 
Mounted 
(NSM) Bars

TABLE 2. CFRP NSM Bar Properties 

Properties Average Values 

Tensile Strength 2,068 MPa (300 ksi)  

Tensile Modulus 131 GPa (19 x 103 ksi)  

Tensile Elongation 1.58% 

Size 12.7 mm (0.50 in.) 

 

Carbon Fiber 
Reinforced 
Polymer 
Laminate

TABLE 3. CFRP laminate Properties 

Properties Average Values 

Tensile Strength 1,240 MPa (180 ksi) 

Tensile Modulus 74 GPa (10,700 ksi) 

Tensile Elongation 1.7% 

Thickness per layer 1.0 mm (0.04 in.) 
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Test 3: Retrofit of As--Built Concrete Wall Pier 1 
– CFRP Vertical Anchors

Retrofit design of wall pier R1: (a) 18 vertical CFRP sheets and vertical CFRP anchors;
(b) 10 transverse (horizontal) CFRP anchors; (c) 4+2+1 hoop direction CFRP jackets;  
(d) wall cross-section at bottom 24 in.

(a) (b) (c)

(d)

2
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Vertical CFRP Anchors (9 on each face)

• Increase Flexural Resistance

• Create Positive Connection between 
Footing and Wall Pier

Transverse (Horizontal) CFRP Anchors (5+5)

• Two rows of 5 CFRP anchors

• Increase Confinement in Plastic Hinge 
Region

• Increase Clamping Pressure on Lap 
Spliced Steel Rebar 
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Transverse (Horizontal) CFRP Anchors: 
Confinement

Transverse (Horizontal) CFRP Anchors: Shear 
FFriction Improves Clamping Pressure on Lap Splice

Wall Section
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Carbon Fiber Reinforced 
Polymer Laminates

• Two vertical CFRP layers on each wall 
face to improve flexural bond

• 4+2+1 CFRP hoop sheets to improve 
confinement

4

2

1

Retrofit 1: CFRP Vertical Anchors

CFRP on each wall face:

• Vertical CFRP Anchors : 99

• Unidirectional Vertical CFRP Sheets : 22

• Horizontal CFRP Anchors : 55+5

• Unidirectional Hoop Direction CFRP Sheets: 
4+2+14

2

1
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Comparison of hysteresis curves of as-built specimen AB and retrofit specimen R1 

Retrofit 1: Results

Behavior of retrofitted wall pier R1: (a) CFRP jacket debonding at 1.5% drift ratio;
(b) vertical CFRP anchor failure at 2.0% drift ratio

(a) (b)

Retrofitted Wall Pier 1 damage
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Retrofitted specimen R1 lap-splice strain in the footing and wall bars

Test 4: Retrofit of As-BBuilt Concrete Wall Pier 2 
– CFRP NSM Bars
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(a) (b) (c)

(d)

Retrofit design for wall pier R2: (a) 18 vertical CFRP NSM rods; (b) 10 transverse CFRP 
anchors; (c) 4+2+1 CFRP jackets; (d) wall cross-section at bottom 24 in.

Near Surface Mounted (NSM) Bars

• Increases Flexural Resistance

• Creates Positive Connection between 
Footing and Wall Pier
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Horizontal CFRP Anchors (10)

• Increase Confinement in Plastic Hinge 
Region

• Increase Clamping Pressure on Lap 
Spliced Steel Rebar 

Retrofit 2: CFRP NSM Bars

CFRP on each wall face:

• CFRP NSM Bars: 99

• Horizontal CFRP Anchors : 55+5

• Unidirectional Hoop Direction CFRP 
Sheets : 4+2+1

4

2

1
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Retrofit 2: Results

Comparison of hysteresis curves of as-built specimen AB and retrofit specimen R2 

• NSM Bar Bond Failures

Retrofitted Wall Pier 2 damage
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Retrofitted specimen R2 lap-splice strain in the footing and wall bars

y

Strain       
(%)

Comparison of Test Results for Wall Piers

Test Criteria As-built Wall Pier Vertical Anchor 
Retrofit 1

CFRP NSM 
Retrofit 2

Average maximum lateral 
force Kips (kN)

15 (68) 26 (117) 25 (113)

Ultimate drift ratio 6.0 % 7.0 % 6.0 %

Hysteretic Energy dissipation
Kip-in. ( kN-m)

496 (56) 816 (92) 827 (93)

Failure mode Lap splice failure
Vertical CFRP 

Anchor Tensile 
Failure

Bond Failure of 
CFRP NSM Bars
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Repair Methods

How do we fix the damaged As-built 
Wall Pier after an earthquake 

occurs?

How do we fix the damaged 
Modern Code Compliant Wall Pier 

after an earthquake occurs?

Test 5: Repair of As-Built Concrete Wall Pier 
– Mild Steel Vertical NSM Bars
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(a) (b) (c)

Repair of specimen ABRP: (a) steel NSM bars; (b) horizontal CFRP anchors;
(c) hoop direction CFRP jackets

Repair of As-BBuilt Concrete Wall Pier 

Mild Steel NSM bar placement Epoxy coverage of Mild Steel NSM bars 

Repair of As-Built Concrete Wall Pier 
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Application of CFRP hoop layers Transverse (horizontal) CFRP anchors

RRepair of As-BBuilt Concrete Wall Pier 

Footing crack at 1.5% drift ratio East face CFRP jacket debonding at 4.0% 
drift ratio

Repair of As-Built Concrete Wall Pier 
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Repair of As-Built Concrete Wall Pier 

Comparison of As-built and As-built Repair hysteresis

Summary of AB & ABR performance 

        Test criteria 

        Average maximum lateral force 

        Drift ratio at peak force 

        Ultimate drift ratio 

        Failure mode 

        Yield force 

        Initial elastic stiffness 

        Yield displacement 

        Ultimate displacement 

        Displacement ductility 

As-built (AB) 

15.2 kip (68 kN) 

4.0 % 

6.0 % 

West Lap-Splice Failure 

13.0 kip (58 kN) 

16.1 kip/in. (2.8 kN/mm) 

0.81 in. (21 mm) 

5.76 in. (146 mm) 

7.1 

Repaired (ABRP) 

21.6 kip (96 kN) 

3.0% 

5.0% 

Debonding of mild steel NSM Bar 

17.3 kip (77 kN) 

23.6 kip/in. (4.1 kN/mm) 

0.74 in. (19 mm) 

4.80 in. (122 mm) 

6.5 

Repair of As-BBuilt Concrete Wall Pier 
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Test 6: Repair of Modern Code Compliant 
Concrete Wall Pier

– Headed Steel Bars & CFRP Shell Filled with 
Concrete Grout

Repair of Modern Code 
Compliant Concrete Wall Pier

Headed steel bar installation process: (left) drilling holes; (right) headed bar 
placement for specimen MCRP
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Repair of Modern Code 
Compliant Concrete Wall Pier

Epoxy injection of cracks for specimen MCRP

Repair of Modern Code 
Compliant Concrete Wall Pier

Steel collar with shear studs
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Repair of Modern Code 
Compliant Concrete Wall Pier

CFRP donut formation: (left) shell formation with precut aluminum foil;            
(right) CFRP wrapped around the aluminum form

Repair of Modern Code 
Compliant Concrete Wall Pier

Repair cross-section
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Repair of Modern Code 
Compliant Concrete Wall Pier

Moment demand and moment capacity of the repaired specimen

Repair of Modern Code 
Compliant Concrete Wall Pier

Hysteresis of repaired specimen MCRP
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Repair of Modern Code 
Compliant Concrete Wall Pier

Experimental observation of specimen MCRP at a 5% drift ratio

Repair of Modern Code 
Compliant Concrete Wall Pier

Failure of repaired modern code compliant wall pier: 6% drift ratio
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        Test criteria 

        Average maximum lateral force 

        Drift ratio at peak force 

        Ultimate drift ratio 

        Failure mode 

        Yield force 

        Initial elastic stiffness 

        Yield displacement 

        Ultimate displacement 

        Displacement ductility 

Modern code compliant (MCC) 

31.6 kip (141 kN) 

8.0 % 

10.0 % 

West bar fracture 

29.8 kip (133 kN) 

21.4 kip/in. (3.7 kN/mm) 

1.82 in. (46 mm) 

9.62 in. (244 mm) 

5.3 

Summary of MCC & MCRP performance 

Repaired (MCRP) 

36.4 kip (162 kN) 

5.0% 

6.0% 

Buckling of original wall steel bars 

33.8 kip (150 kN) 

20.8 kip/in. (3.6 kN/mm) 

1.79 in. (45 mm) 

5.65 in. (143 mm) 

3.2 

Repair of Modern Code 
Compliant Concrete Wall Pier

Conclusions -Retrofit
• The as-built wall specimen AB was not able to develop the theoretical

flexural capacity due to lap splice clamping failure

• Retrofit specimen R1 utilized vertical CFRP anchors, transverse CFRP
anchors, vertical CFRP sheets and CFRP jackets

• The lateral load for retrofit pier R1 dropped in the first cycle of the 2.0%
drift ratio due to fracture of two CFRP vertical anchors on the west side
of the wall

• Retrofitted specimen R1 performed better than the as-built specimen AB
and reached a drift ratio of 7%

• The retrofitted wall pier R1 at 2.0% drift ratio had 2.1 times the initial
stiffness, 1.6 times the hysteretic energy dissipation, and 2.0 times the
flexural capacity of the as-built specimen AB
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Conclusions -Retrofit
• The second wall pier retrofit specimen R2 used vertical CFRP NSM

bars, transverse CFRP anchors and CFRP jackets

• The hysteresis curves showed that retrofit specimen R2 continued to
resist the increased lateral force until the 1.5% drift ratio

• Debonding failure of two CFRP NSM bars was observed at this time;
however, retrofit specimen R2 performed well in resisting the increased
lateral force

• The CFRP jackets and transverse CFRP anchors remained intact and did
not experience any cracks or fracture until a drift ratio of 7%

• Retrofit specimen R2 had 1.9 times the initial stiffness, 1.7 times the
hysteretic energy dissipation, and 1.6 times the flexural capacity of the
as-built specimen AB

Conclusions -Retrofit
• Both retrofit methods were successful in increasing the flexural capacity

of the wall piers

• The retrofit methods provide alternatives for increasing the flexural
strength of substandard bridge wall piers in an economical and fast
manner

• In order to seismically upgrade the wall piers more efficiently, a CFRP
jacket with an increased number of layers is needed to provide more
confinement and improve the displacement ductility

37



Conclusions -Repair
• The modern code compliant specimen MCC was able to develop the

theoretical flexural capacity and performed very well up to a drift ratio
of 10%

• The seismically deficient (AB) and MCC specimen were repaired after
significant damage from cyclic loading simulating earthquake damage
to upgrade their performance

• The repair of the as-built reinforced concrete pier wall (ABRP) failed in
the second cycle of the 4.0% drift ratio due to debonding of the mild
steel NSM bars

• The repaired as-built (ABRP) specimen performed better than the as-
built specimen (AB) with increased stiffness. lateral force and hysteretic
energy

Conclusions --Repair
• The repair for the modern code compliant wall pier specimen (MCRP)

used a rapid seismic repair method, which utilizes plastic hinge
relocation using a CFRP shell and headed steel bars

• This repair method was successfully applied to restore both the load
carrying capacity as well as stiffness of a damaged reinforced concrete
wall pier with a cross-section aspect ratio of four

• The repair method was able to strengthen the damaged region
considering the additional bending moment and shear

• No failure was observed in the repair system; the CFRP shell was intact
and did not experience any cracking, while continuously providing
confinement and shear strength to the repaired region

• The repaired specimen (MCRP) matched the displacement capacity and
energy dissipation of the modern code compliant specimen up to a drift
ratio of 6.0%
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