# A partnership with MDT-NDDOT-SDDOT-WYDOT

A partnership with MDT•NDDOT•SDDOT•WYDOT and the Mountain-Plains Consortium Universities



## Welcome!

MPC-540 Updating and Implementing the Grade Severity Rating System(GSRS) for Wyoming Mountain Passes

Presented by: Milhan Moomen

Our partners:



This material is subject to change at the discretion of the presenter. If there are changes, TLN will obtain a revised copy to be posted on the LMS for download after the presentation. Thank you.







- Mountain downgrades are some of the most unforgiving truck environments
- The combination of length and high inclines makes some downgrades hazardous
- Brake systems slow trucks by friction between shoes and drums/discs
- Continuous braking to control descent speed results in elevated temperatures in the brakes
- This increasing temperature can lead brake to brake failure and crashes with devastating consequences.



UNIVERSITY OF WYOMING



























### Selecting Representative Truck



### **Test Truck Engine**

Cummins ISX15 Engine (2013) 550-Hp 2050 lb-ft torque @ 1200 rpm 1200 rpm – 2000 rpm speed range Jacobs (Jake) Engine Brake





17







| Moosur                     | ad Paramotors        |  |
|----------------------------|----------------------|--|
| Ivicasui                   |                      |  |
| Measured Parameter         | Instrument or Sensor |  |
| Brake Temperature          | Infrared sensor      |  |
| Vehicle Speed              | CAN bus              |  |
| Deceleration               | CAN bus              |  |
| Vehicle Gross Weight       | Weigh Station        |  |
| Engine Speed               | CAN bus              |  |
| Coordinates                | GPS                  |  |
| Brake Application Pressure | Pressure Transducer  |  |
| Ambient Temperature        | Thermocouple         |  |
| Wind speed and Direction   | Weather Station      |  |
| Atmospheric Pressure       | Weather Station      |  |
| Ambient Humidity           | Weather Station      |  |
| Number of Snubs            | CAN bus              |  |











| Field Tests an                                        | Field Tests and Updating the GSRS                                                                                                           |                                                                  |          |                       |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|-----------------------|
| <ul> <li>Three</li> <li>&gt;</li> <li>&gt;</li> </ul> | <ul> <li>Three main tests performed to update the GSRS model:</li> <li>Coast-down</li> <li>Cool-down</li> <li>Hill descent tests</li> </ul> |                                                                  |          |                       |
|                                                       | Parameter                                                                                                                                   | Expression/Value                                                 | Units    |                       |
|                                                       | Horsepower into brakes $(HP_B)$                                                                                                             | $HP_B = \left(W\theta - F_{drag}\right)\frac{V}{375} - HP_{eng}$ | hp       |                       |
|                                                       | Drag forces (F <sub>drag</sub> )                                                                                                            | $F_{drag} = 450 + 17.25V$                                        | lb       |                       |
|                                                       | Diffusivity (K <sub>1</sub> )                                                                                                               | $K_1 = 1.23 + 0.0256V$                                           | 1/hr     |                       |
|                                                       | Heat transfer parameter $(K_2)$                                                                                                             | $K_2 = (0.100 + 0.00208V)^{-1}$                                  | °F/hp    |                       |
|                                                       | Engine brake force ( <i>HP<sub>eng</sub></i> )                                                                                              | $HP_{eng} = 73$                                                  | hp       |                       |
|                                                       | Ambient temperature $(T_{\infty})$                                                                                                          | $T_{\infty} = 90$                                                | °F       |                       |
|                                                       | Initial brake temperature (T <sub>o</sub> )                                                                                                 | $T_{o} = 150$                                                    | °F       |                       |
|                                                       | FHWA GSRS Model Parameters (Myers et al. 1980)                                                                                              |                                                                  |          |                       |
|                                                       |                                                                                                                                             | 28                                                               | <b>1</b> | Iniversity of Wyoming |





Field Tests and Updating the GSRS

### **Determination of Drag Force (F**drag)

- The objective of this test was to derive an expression for drag force and engine power absorption from field tests and simulation using coast-down tests
- Coast-down tests conducted according to SAE J1263 and EPA standards



• Two different tests conducted

- > With gear in neutral to measure drag forces
- > With gear and engine brake engaged to measure engine power absorption

```
31
```

🐐 UNIVERSITY of WYOMING





















| Horsepower into brakes $(HP_B)$                                                                                                                   | $WD = (WQ E)^{V} UD$                                                                          | Units                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|
| Horsepower into brakes $(HP_B)$                                                                                                                   | $\Pi P_B = (W \theta - r_{draa}) - \Pi P_{ena}$                                               | ha                                   |
| Drag forces (Edward)                                                                                                                              | $F_{4112} = 459.35 \pm 0.132V^2$                                                              | np<br>lb                             |
| <b>Diffusivity</b> $(K_1)$                                                                                                                        | $K_1 = 1.5x(1.1852 + 0.0331V)$                                                                | 1/hr                                 |
| Heat transfer parameter (K <sub>2</sub> )                                                                                                         | $K_2 = \frac{1}{hA_c} = (0.1602 + 0.0078V)^{-1}$                                              | °F/hp                                |
| Engine brake force ( <i>HP<sub>eng</sub></i> )                                                                                                    | $HP_{eng} = 63.3$                                                                             | hp                                   |
| nperature from emergency stopping $(T_E)$                                                                                                         | $T_E = 3.11 \ x \ 10^{-7} WV^2$                                                               | °F                                   |
| Ambient temperature $(T_{\infty})$                                                                                                                | $T_{\infty} = 90$                                                                             | °F                                   |
| Initial brake temperature $(T_o)$                                                                                                                 | $T_{o} = 150$                                                                                 | °F                                   |
| Temperature Plots from express<br>$L = -\frac{V}{K_1} ln \left[ \frac{T_{lim} - 90 - K_2 H}{60 - K_2 H P_B} \right]$ Where: $T_{lim} = T_6 + T_7$ | ssion:<br>$T_{lim} = \text{Limiting}$ $T_{f} = \text{Temperatur}$ $T_{E} = \text{Temperatur}$ | temperat<br>e from st<br>re rise fro |





















### **Formulation of WSS Signs**

### WSS Signs from GSRS

### Formulating WSS Signs

- 1. Determine the grade percent  $(\theta)$  and truck braking length (L) in miles, maximum load limit and maximum speed limit on the downgrade.
- 2. Using the plots of  $V_{max}$  versus L for various values of  $\theta$ , determine the heaviest weight,  $W_L$ , that is an integral multiple of 5000 lb, and for which  $V_{max}$  is greater than or equal to the speed limit.
- 3. Compute the number of 5,000 lb weight interval (N) between  $W_L$  and the weight at the maximum speed limit,  $W_M$  from:

$$N = \frac{W_M - W_L}{5,000}$$

- 4. If N is less than or equal to 5, the column of weights will begin with  $W_L$  and increase in 5,000 lb increments to the load limit,  $W_M$ .
- 5. If N is greater than 5, the column of weights for placement on the WSS sign will begin with the lower weight,  $(W_L)$  and increase in 10,000 lb to the load limit,  $W_M$ .
- 6. The speed associated with each weight interval for the WSS sign (defined by the two adjacent weights in the weight column) will be the safe downgrade speed for the heaviest weight of the interval. The maximum speeds are then placed in columns for each weight category.

53

🐐 UNIVERSITY OF WYOMING

# <section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>











| Formulation of WSS Signs<br>WSS Signs from GSRS                                                                                                                                                                                                                   |                                  |                        |                          |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|--------------------------|--------|
| <ul> <li>The number of weight categories on the WSS signs will be:<br/>N = <sup>80,000-60,000</sup>/<sub>5,000</sub> = 4</li> <li>N = 4. N &lt;5, so the column of weights will begin with 60,000 lb and increase in 5,000 lb increments to 80,000 lb.</li> </ul> |                                  |                        |                          |        |
| <ul> <li>From the V<sub>max</sub> versus I corresponding speeds a</li> </ul>                                                                                                                                                                                      | plots, the maximum truck we re : | eights and             |                          |        |
| Maximum Truck Weight (lb)                                                                                                                                                                                                                                         | Maximum Safe Speed (mph)         |                        |                          |        |
| 80,000                                                                                                                                                                                                                                                            | 18                               |                        |                          |        |
| 75,000                                                                                                                                                                                                                                                            | 22                               |                        |                          |        |
| 70,000                                                                                                                                                                                                                                                            | 29                               |                        |                          |        |
| 65,000                                                                                                                                                                                                                                                            | 42                               |                        |                          |        |
| 60,000                                                                                                                                                                                                                                                            | 55                               | Advisory Maxim         | um Descent Speeds        | _      |
|                                                                                                                                                                                                                                                                   |                                  | Weight Increments (lb) | Maximum Safe Speed (mph) |        |
|                                                                                                                                                                                                                                                                   |                                  | 61,000 - 65,000        | 40                       |        |
|                                                                                                                                                                                                                                                                   |                                  | 66,000 - 70,000        | 30                       |        |
|                                                                                                                                                                                                                                                                   |                                  | 71,000 - 75,000        | 25                       |        |
|                                                                                                                                                                                                                                                                   |                                  | 76,000 - 80,000        | 20                       |        |
|                                                                                                                                                                                                                                                                   | 60                               |                        | 🐐 UNIVERSITY of WS       | /oming |

### Recommendations

- Installation of WSS signs from the updated and validated GSRS model will enhance truck safety on Wyoming mountain passes. Maximum safe speeds displayed on the WSS signs cannot be currently enforced and are to be considered only as advisory speeds.
- Drivers should be educated on the use of the GSRS and WSS signs. The education should also focus on improving mountain driving for inexperienced drivers and those unfamiliar with mountain passes.
- The trucking industry should be encouraged to adopt and install disc brakes, especially for fleets which frequently travel over mountain passes. Disc brakes are much more resistant to brake fade and their adoption will reduce the incidence of runaway crashes on mountain passes.
- Brake systems have to be regularly checked and maintained. Attention should be paid to reducing brake imbalance on truck fleets.

61

🐐 UNIVERSITY OF WYOMING

### Recommendations

- Trucks equipped with retarders should be set to their maximum setting on downgrades. The trucks should then descend the downgrade at the highest speed displayed on the WSS sign.
- The test truck used to update the GSRS model was fitted with disc brakes on the steer axles. However, the current penetration of disc brakes in the American market is about 20% and is continuously growing. The GSRS will become fully implementable once the proportion of trucks fitted with disc becomes substantial.
- Before-after studies should be conducted after implementation of the GSRS/WSS signs to assess their safety effectiveness. The empirical bayes method may be adopted if suitable data is available.







### Formulation of Weight Specific Speed Signs (Case Studies)

| Step Definition                                                                                                                                                                                                                                                                                                  | Purpose                                                                                                                                                                                                                                                                           | Output                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>1. Identify Potential Sites in Need of<br/>WSS Signing</li> <li>Activity 1 - Identify the locations of all<br/>severe downgrades.</li> <li>Activity 2 - Collect and analyze truck<br/>crash and volume data.</li> <li>Activity 3 - Determine the magnitude of<br/>the truck runaway problem.</li> </ul> | To develop a list of all possible<br>project sites and to determine<br>which of these possible sites are<br>probable candidates for further<br>analysis. Data used to<br>accomplish this purpose include<br>geometric, police, maintenance<br>and accident data.                  | A list of downgrade<br>locations that would benefit<br>from the installation of<br>WSS signs.                                                                                                     |
| <ul> <li>2. Perform Field Inspection of Sites<br/>Identified</li> <li>Activity 1 - Verify percent and length of<br/>downgrade.</li> <li>Activity 2 - Perform site familiarization<br/>and observational studies.</li> <li>Activity 3 - Determine truck braking<br/>length.</li> </ul>                            | To obtain a familiarity of<br>geometric conditions, presence<br>of traffic control devices and<br>potential hazards. The last<br>activity of the field review<br>consists of performing necessary<br>field measurements to obtain the<br>percent and physical length of<br>grade. | Knowledge of the geometric<br>and traffic control<br>conditions of the site.<br>Measurement of the percent<br>and physical length of grade<br>and a determination of the<br>truck braking length. |
| <ul> <li><b>3. Determine Grade Severity</b></li> <li>Activity 1 - GSRS/WSS considerations.</li> <li>Activity 2 - Determine grade severity.</li> </ul>                                                                                                                                                            | To determine the maximum safe<br>downgrade speeds for different<br>weight categories using the<br>percent and truck braking length.                                                                                                                                               | A list of maximum safe<br>downgrade speeds for<br>different categories of truck<br>weight.                                                                                                        |
| 4. Determine WSS Signing Needs                                                                                                                                                                                                                                                                                   | To determine the number of<br>weight intervals and associated<br>maximum safe downgrade<br>speeds.                                                                                                                                                                                | A determination of the<br>weight intervals and<br>recommended safe<br>downgrade speeds to be<br>placed on the WSS sign.                                                                           |
| 5. Install WSS Signs                                                                                                                                                                                                                                                                                             | To present concerns that should<br>be followed when constructing<br>and installing WSS signs.                                                                                                                                                                                     | WSS sign design and placement criteria.                                                                                                                                                           |

### Table 1 Overview of the GSRS Procedure and Activities (Bowman, 1989)

### **Determining Maximum Safe Speed for Different Weight Categories**

The following procedure is used to determine the WSS weights and safe speeds for any grade (Bowman, 1989; Johnson et al., 1982):

- 1. Determine the percent of grade ( $\theta$ ), the truck braking length (L) in miles, maximum load and speed limits on the downgrade.
- 2. Using the plots of  $V_{max}$  versus L for various values of  $\theta$ , determine the heaviest weight,  $W_L$ , that is an integral multiple of 5000 lb, and for which  $V_{max}$  is greater than or equal to the speed limit.
- 3. Compute the number of 5,000 lb weight intervals (N) between  $W_L$  and the weight at the maximum speed limit,  $W_M$  from:

$$N = \frac{W_M - W_L}{5,000}$$

- 4. If N is less than or equal to 5, the column of weights will begin with  $W_L$  and increase in 5,000 lb increments to the load limit,  $W_M$ .
- 5. If N is greater than 5, the column of weights for placement on the WSS sign will begin with the lower weight,  $(W_L)$  and increase in 10,000 lb increments to the load limit,  $W_M$ .
- 6. The speed associated with each weight interval for the WSS sign (defined by the two adjacent weights in the weight column) will be the safe downgrade speed for the heaviest weight of the interval. The maximum speeds are then placed in columns for each weight category

Three case studies are used to demonstrate the formulation of WSS signs. This is presented below. The case studies presented here are for single downgrades.

### Case Study 1

The downgrade used for this case study is a section of the Loveland Pass in the Colorado Rockies on the Continental Divide. The Loveland pass is located on U.S. Highway 6 close to the town of Dillon in Colorado. The load limit on the roadway is 80,000 lb. The downgrade percent for the section is 6% with an 8.4-mile truck braking length. The speed limit for the section is 45 mph.

### Downgrade Characteristics

Percent downgrade (%): 6

Braking length (L) (miles): 8.4

Maximum load limit  $(W_M)$  (lb): 80,000

Maximum speed limit (mph): 45 mph

- From the  $V_{max}$  versus L plot for 80,000 lb (Figure 3), a line is traced from the 8.4 mile line on the x-axis to the 6% curve. The point where the line and curve intersect is then traced to the y-axis where  $V_{max}$  is read.
- This exercise is continued for different weights until the weight for which  $V_{max}$  is greater than or equal to 45 mph is found. For this case study, the highest integral multiple of 5000 lb for which  $V_{max}$  is greater than or equal to 45 mph is 65,000 lb (Figure 6).
- The number of weight categories N is calculated as:

$$N = \frac{80,000 - 65,000}{5,000} = 3$$

- Since N = 3, the column of weights will begin with 65,000 lb and increase in 5,000 lb increments to 80,000 lb.
- From the  $V_{max}$  versus L plots, the maximum truck weights and corresponding speeds are (Table 2):

| Maximum Truck Weight (Pounds) | Maximum Safe Speed (mph) |
|-------------------------------|--------------------------|
| 80,000                        | 22                       |
| 75,000                        | 27                       |
| 70,000                        | 35                       |
| 65,000                        | 45                       |

| Table 2. T  | ruck Weigh | ts and Estir | nated Safe | Speeds ( | Case Study | v 1) |
|-------------|------------|--------------|------------|----------|------------|------|
| 1 abic 2. 1 | Tuck Weigh | us and Estin | nateu Bare | Specus ( | Case bruu  | y IJ |

• The weight intervals and corresponding maximum safe speeds determined as appropriate for the WSS sign are (Table 3):

| Maximum Truck Weight (Pounds) | Maximum Safe Speed (mph) |
|-------------------------------|--------------------------|
| 66,000 - 70,000               | 35                       |
| 71,000 - 75,000               | 30                       |
| 76,000 - 80,000               | 20                       |

 Table 3. Weight Categories and Approximate Safe Speeds (Case Study 1)

### Case Study 2

The downgrade section used for this case study forms part of US highway 14 in northern Wyoming close to Dayton. This is a long downgrade stretch with an average slope of 6% and 12 miles long, with a speed limit of 40 mph. For demonstration purposes, it is assumed the maximum weight limit on this highway is 90,000 lb.

- From the  $V_{max}$  versus L plot 90,000 lb (Figure 1), a line is traced from the 12 mile line on the x-axis to the 6% curve. The point where the line and curve intersect is then traced to the y-axis where  $V_{max}$  is read.
- This exercise is first done for the maximum weight of 90,000 lb continued for different weights until the weight for which  $V_{max}$  is greater than or equal to 40 mph is found. For this case study, the highest integral multiple of 5000 lb for which  $V_{max}$  is greater than or equal to 40 mph is 60,000 lb (Figure 7).
- The number of weight categories N is calculated as:

$$N = \frac{90,000 - 60,000}{5,000} = 6$$

- Since N > 5, the column of weights will begin with 60,000 lb and increase in 10,000 lb increments to 90,000 lb.
- From the  $V_{max}$  versus L plots, the maximum truck weights and corresponding speeds are (Table 4):

| Maximum Truck Weight (Pounds) | Maximum Safe Speed (mph) |
|-------------------------------|--------------------------|
| 90,000                        | 14                       |
| 80,000                        | 18                       |
| 70,000                        | 24                       |
| 60,000                        | 40                       |

 Table 4. Truck Weights and Estimated Safe Speeds (Case Study 3)

• The weight intervals and corresponding maximum safe speeds determined as appropriate for the WSS sign are (Table 5):

| Maximum Truck Weight (Pounds) | Maximum Safe Speed (mph) |
|-------------------------------|--------------------------|
| 60,000 - 70,000               | 25                       |
| 71,000 - 80,000               | 20                       |
| 81,000 - 90,000               | 15                       |

Table 5. Weight Categories and Approximate Safe Speeds (Case Study 3)

### Case Study 3

The downgrade segment used for this case study is located on the Vail Pass on Interstate 70. The load limit on the roadway is 80,000 lb. The downgrade is 7% with 7 miles of truck braking length. The speed limit for the section has been set at 65 mph.

- From the  $V_{max}$  versus L plot for 80,000 lb (Figure 3), a line is traced from the 7 mile line on the x-axis to the 7% curve. The point where the line and curve intersect is then traced to the y-axis where  $V_{max}$  is read.
- This exercise is continued for different weights until the weight for which  $V_{max}$  is greater than or equal to 65 mph is found. For this case study, the highest integral multiple of 5000 lb for which  $V_{max}$  is greater than or equal to 65 mph is 55,000 lb (Figure 8).
- The number of weight categories N is calculated as:

$$N = \frac{80,000 - 55,000}{5,000} = 5$$

- Since N = 5, the column of weights will begin with 55,000 lb and increase in 5,000 lb increments to 80,000 lb.
- From the  $V_{max}$  versus L plots, the maximum truck weights and corresponding speeds are (Table 6):

| Maximum Truck Weight (Pounds) | Maximum Safe Speed (mph) |
|-------------------------------|--------------------------|
| 80,000                        | 17                       |
| 75,000                        | 21                       |
| 70,000                        | 26                       |
| 65,000                        | 36                       |
| 60,000                        | 58                       |
| 55,000                        | 65                       |

 Table 6. Truck Weights and Estimated Safe Speeds (Case Study 3)

• The weight intervals and corresponding maximum safe speeds determined as appropriate for the WSS sign are (Table 7):

| Maximum Truck Weight (Pounds) | Maximum Safe Speed (mph) |
|-------------------------------|--------------------------|
| 55,000 - 60,000               | 60                       |
| 61,000 - 65,000               | 35                       |
| 66,000 - 70,000               | 25                       |
| 71,000 - 75,000               | 20                       |
| 76,000 - 80,000               | 15                       |

 Table 7. Weight Categories and Approximate Safe Speeds (Case Study 3)

### MAXIMUM SAFE SPEED PLOTS



Figure 1. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 90,000 lb



Figure 2. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 85,000 lb



Figure 3. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 80,000 lb



Figure 4. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 75,000 lb



Figure 5. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 70,000 lb



Figure 6. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 65,000 lb



Figure 7. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 60,000 lb





Figure 8. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 55,000 lb

Grade (percent)



Figure 9. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 50,000 lb



Figure 10. Graph. Maximum Safe Speed as a Function of Grade Length and Steepness for Truck Weight 45,000 lb

# **TRANSPORTATION** LEARNING NETWORK

A partnership with MDT•NDDOT•SDDOT•WYDOT and the Mountain-Plains Consortium Universities

Thank you for participating!

You will be automatically directed to a short survey, please take a moment to provide your feedback.

### Transportation Learning Network Contact Information

TLN Help Desk Office: (701) 231-1087 shannon.l.olson@ndsu.edu

Office: (701) 231-7766 susan.hendrickson@ndsu.edu

https://tln.learnflex.net/ https://www.translearning.org/

Thank you to our partners:





