### **TRANSPORTATION LEARNING NETWORK** A partnership with MDT·NDDOT·SDDOT·WYDOT and the Mountain-Plains Consortium Universities

## Welcome!

## MPC 606 – Image-Based 3D Reconstruction of Utah Roadway Assets

# Presented by: Dr. Abbas Rashidi, Chandler Cross and Mohammad Farhadmanesh

Our partners:



This material is subject to change at the discretion of the presenter. If there are changes, TLN will obtain a revised copy to be posted on the LMS for download after the presentation. Thank you.

.

### Image-Based 3D Reconstruction of Utah Roadway Assets

Dr. Abbas Rashidi Assistant Professor Civil & Environmental Engineering Project Supervisor

#### MPC Presentation

Chandler Cross Graduate Research Assistant M.S. Civil & Environmental Engineering Project Lead





Mohammad Farhadmanesh Graduate Research Assistant, Ph.D Candidate, Civil & Environmental Engineering Project Advisor



**THE UNIVERSITY OF UTAH** 

# Outline

- 1. Why was this project necessary?
- 2. Data acquisition technologies
  - LiDAR
  - Photogrammetry
- 3. Software testing
- 4. Data collections
  - Highway asset management
  - UAS highway asset management
  - Pedestrian access ramp inspections
  - Pavement distress & bridge inspection
- 5. Data evaluations
  - For case studies mentioned above
- 6. Limitations and challenges
- 7. Recommendations
- 8. Cost & Time Analysis
- 9. Summary
- 10. Conclusion
- 11. Acknowledgements

# Why was this project necessary?

- Utah's transportation system is one of it's most valuable assets
  - Valued at more than \$45 billion
- Various tiers of assets within UDOT based on value and financial impact
  - Tier 1
  - Tier 2 Main focus of this research
  - Tier 3
- Asset management is of utmost importance to ensure an efficient and safe transportation system
- Asset managers must have access to up-to-date information regarding all assets and their conditions
- Requires a fast, efficient, and affordable data collection procedure
- Necessary to test whether photogrammetry can be considered an acceptable alternative to LiDAR within UDOT

| Asset                       | Tier |
|-----------------------------|------|
| Pavement                    | 1    |
| Bridges                     | 1    |
| ATMS/Signal Devices         | 1    |
| Pipe Culverts               | 2    |
| Signs                       | 2    |
| Walls                       | 2    |
| Rumble Strips               | 2    |
| ADA Ramps                   | 2    |
| Barrier                     | 2    |
| Pavement Markings           | 2    |
| Cattle Guards               | 3    |
| Interstate Lighting         | 3    |
| Fences                      | 3    |
| Rest Areas                  | 3    |
| Curb and Gutter             | 3    |
| Trails                      | 3    |
| Bike Lanes                  | 3    |
| Surplus Land                | 3    |
| At-grade Railroad Crossings | 3    |

4 of 38

THE UNIVERSITY OF UTAH

# Data Acquisition Technologies - LiDAR



VX15 mounted to a drone – Asset Management



Maptek I-Site 8820 Terrestrial LiDAR Scanner – Pedestrian Access Ramps & Pavement Distress



Mandli Communications Mobile LiDAR Vehicle - Asset Management

### Data Acquisition Technologies - Photogrammetry



GoPro Hero 8+ - Asset Management & Pavement Distress



Fujifilm X-T30 – Pedestrian Access Ramps



DJI Mavic 2 Pro - Asset Management

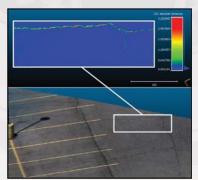
6 of 38

#### THE UNIVERSITY OF UTAH

# List of Case Studies for Asset Management

Main Case Studies

#### 1. Highway Asset Management


- Mobile LiDAR
- Mobile photogrammetry
- UAS LiDAR and photogrammetry
- 2. Pedestrian Access Ramp Inspections
  - Terrestrial LiDAR
  - Photogrammetry

#### Supplemental Case Studies

- 1. Pavement Distress Analysis
  - Terrestrial LiDAR
  - Mobile photogrammetry
- 2. Bridge Inspection
  - Mobile LiDAR
    - Terrestrial LiDAR
  - Mobile photogrammetry



Highway Asset Management



Pavement Distress Analysis



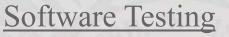
Pedestrian Access Ramps

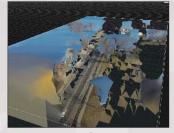


Bridge Inspection

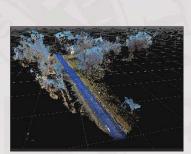
# Software Testing

- Multitude of photogrammetry software on the market
- Imperative to decide which software provided the best overall point cloud
- Tested both data collection procedures
  - Traditional
  - Linear
- The same data was uploaded into each software for comparison
  - 163 images from a city street data collection



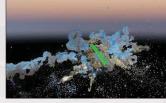




THE UNIVERSITY OF UTAH

Agisoft






Reality Capture



3DF Zephyr

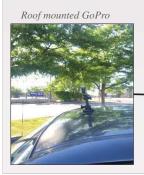


Context Capture



Pix 4D

| Software Package   | Number of<br>Registered Images<br>(Out of 163) | Processing Time<br>(hrs) | Number of<br>Generated Points | Point Cloud Quality |
|--------------------|------------------------------------------------|--------------------------|-------------------------------|---------------------|
| Agisoft            | 89                                             | 3.5                      | 21,145,499                    | Unacceptable        |
| Reality Capture    | 161                                            | 3                        | 12,000,000                    | Unacceptable        |
| 3DF Zephyr         | 163                                            | 2                        | 2,102,289                     | Average             |
| Context<br>Capture | 163                                            | 1.75                     | 55,104,235                    | Above Average       |
| Pix <b>4</b> D     | 163                                            | 4                        | 1,452,751                     | Unacceptable        |


### Data Collection – Highway Asset Management

#### • Tested different cameras

- Started with GoPro Hero 3+
  - Limited to: 4K @ 15 FPS, 2.7K @ 30 FPS, 1080 @ 60 FPS
  - No stabilization
- Upgraded to the GoPro Hero 8+
  - 4K @ 60 FPS, 2.7K @ 120 FPS, 1080 @ 240 FPS
  - Great video stabilization

#### •Hood mounted vs. roof mounted camera

•Roof mounted captured the vehicle hood in frame which can cause processing problems •Hood mounted had a good unobstructed field of view





Hood mounted GoPro

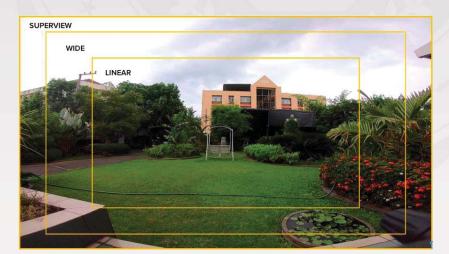




10 of 38

#### THE UNIVERSITY OF UTAH

## Data Collection – Highway Asset Management


- •Field of View
  - •Linear
  - •Wide

•Superview

•Viewing angles

•Camera pointing straight forward works best

•Mobile LiDAR models were obtained through UDOT •Mandli Communication does all of UDOT's asset management data collection



# Data Collection – Highway Asset Management

| Model   | Lighting<br>Conditions                               | Acquisition<br>Time | Traveling<br>Speed<br>(MPH) | Model<br>Length<br>(Miles) | Number of<br>Registered Images<br>(Aligned/Total) | Processing Time<br>(Image-Based) | Number of<br>Points |
|---------|------------------------------------------------------|---------------------|-----------------------------|----------------------------|---------------------------------------------------|----------------------------------|---------------------|
| Model 1 | Dense Clouds,<br>Intermittent light                  | 18 sec              | 50                          | 0.25                       | 999/999                                           | 2 hr 11 min                      | 410 Million         |
| Model 2 | Sunny, perfect sign<br>visibility, no<br>reflections | 20 sec              | 45                          | 0.25                       | 1195/1195                                         | 2 hr 48 min                      | 430 Million         |
| Model 3 | Sunny, perfect sign<br>visibility, no<br>reflections | 18 sec              | 20 (Exit)                   | 0.1                        | 1026/1026                                         | 2 hr 58 min                      | 771 Million         |
| Model 4 | Bright sunlight,<br>many reflections                 | 40 sec              | 45                          | 0.5                        | 850/850                                           | 2 hr 5 min                       | 776 Million         |
| Model 5 | Indirect sunlight,<br>low light on signs             | 20 sec              | 45                          | 0.25                       | 850/850                                           | 2 hr 41 min                      | 706 Million         |
| Model 6 | Sunny, good sign<br>visibility                       | 18 sec              | 40                          | 0.2                        | 1107/1301                                         | 3 hr 42 min                      | 1.3 Billion         |

#### Asset Management Data Collection Table

12 of 38

THE UNIVERSITY OF UTAH

## Data Collection – UAS Asset Management

- Also used Unmanned Aerial Systems (UAS) for asset management data collections
- Two drones
  - DJI M600 w/ a mounted VX15 LiDAR scanner
  - DJI Mavic 2 Pro
- Flew drones with UDOT personnel to gather data regarding a previously-constructed highway model
- Drones were flown 250ft above roadway
- · LiDAR scanner only emits laser pulses straight down
  - 100,000 points per second
- Mavic 2 Pro has an adjustable camera angle
  - Angle was set to 60 degrees below the horizon

#### DJI M600 Drone





DJI Mavic 2 Pro



### Data Collection – Pedestrian Access Ramp Inspections

- Met with UDOT pedestrian ramp experts to discuss pedestrian ramp elements and inspection protocol
  - Red: Pedestrian Access Route
  - Dark Blue: Turning Space
  - Yellow: Ramp
  - Purple: Ramp Flares
  - Green: Detectable Warning Surface
  - Light Blue: Clear Space
  - Orange: Crosswalk
- UDOT C-170 Pedestrian Access Ramp Evaluation Form
  - SmartTool Smart Level
  - Tape Measurer
- Photogrammetry
  - Fujifilm X-T30 digital camera
  - 25-30 pictures per ramp
- LiDAR
  - Maptek I-Site 8820 Terrestrial LiDAR scanner
  - 1 stationary scan



Maptek I-Site 8820



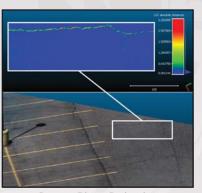
Pedestrian access ramp elements



Fujifilm X-T30

14 of 38

#### 👖 THE UNIVERSITY OF UTAH


### Data Collection – Pedestrian Access Ramp Inspections

| Method                        | Model  | In-Field<br>Data<br>Acquisition<br>Time<br>(Minutes) | Number of<br>images/scans<br>(Aligned/Total) | Processing<br>Time | Number of<br>Points in Point<br>Cloud | File Size   |
|-------------------------------|--------|------------------------------------------------------|----------------------------------------------|--------------------|---------------------------------------|-------------|
|                               | Ramp 1 | < 5 min                                              | 31/31                                        | 47 min 2 sec       | 258,651,814                           | 6.72 GB     |
| Image-based                   | Ramp 2 | < 5 min                                              | 37/37                                        | 52 min 22 sec      | 429,797,343                           | 11.17<br>GB |
|                               | Ramp 3 | < 5 min                                              | 27/29                                        | 52 min 26 sec      | 313,767,481                           | 8.16 GB     |
| Reconstruction                | Ramp 4 | < 5 min                                              | 31/31                                        | 47 min 8 sec       | 263,338,208                           | 6.87 GB     |
|                               | Ramp 5 | < 5 min                                              | 27/29                                        | 51 min 23 sec      | 436,552,997                           | 11.35<br>GB |
|                               | Ramp 6 | < 5 min                                              | 24/25                                        | 49 min 20 sec      | 247,958,617                           | 6.45 GB     |
|                               | Ramp 1 | 16 m 30 s                                            | 1 scan                                       | No Processing      | 12,182,400                            | 768 MB      |
|                               | Ramp 2 | 17 min                                               | 1 scan                                       | No Processing      | 11,955,200                            | 745 MB      |
| LiDAR-Based<br>Reconstruction | Ramp 3 | 12 m 9 s                                             | 1 scan                                       | No Processing      | 3,498,634                             | 222 MB      |
|                               | Ramp 4 | 13 m 45 s                                            | 1 scan                                       | No Processing      | 6,506,448                             | 407 MB      |
|                               | Ramp 5 | 13 m 9 s                                             | 1 scan                                       | No Processing      | 2,999,779                             | 102 MB      |
|                               | Ramp 6 | 13 m 32 s                                            | 1 scan                                       | No Processing      | 2,398,708                             | 83 MB       |

#### Pedestrian Access Ramp Data Collection Table

### Data Collection - Pavement Distress & Bridge Inspection

- Pavement Distress Analysis
  - Compared how accurately mobile photogrammetry could map pavement distress compared to a stationary LiDAR scan
  - LiDAR
    - Maptek I-Site 8820
  - Photogrammetry
    - GoPro Hero 8+
    - Modified asset management collection procedure
- Bridge Inspection
  - Compared
    - Mobile LiDAR point cloud
    - Terrestrial LiDAR point cloud
    - Mobile photogrammetry point cloud
  - Asset management collection procedure
  - Evaluated the width of each diaphragm (11 locations) to the length of the total span
    - Photogrammetry unable to capture data under the bridge



Pavement Distress Registration

#### 16 of 38

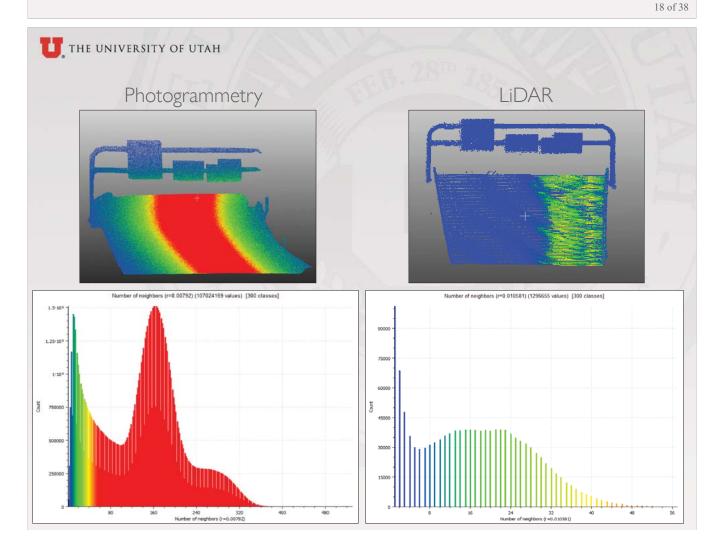
#### THE UNIVERSITY OF UTAH

## Data Evaluation – Highway Asset Management

- Calculated reconstructed sign ratio error
  - Actual sign ratio to reconstructed sign ratio (Width/Length)
- Calculated Sign Densities (points/in<sup>2</sup>)
  - Standard Deviation (SD): How far each measurement deviates from the average of the group
  - Coefficient of Variation (CV): The measure of variability within a group of measurements

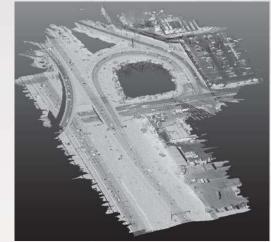
#### • Photogrammetry Averages

- Error 4.33%
- Sign Density 14.6 points/in<sup>2</sup>
- SD 14.6
- CV 0.49


#### • LiDAR Averages

- Error 3.48%
- Sign Density 0.96 points/in<sup>2</sup>
- SD 0.41
- CV 0.42




### Data Evaluation – Highway Asset Management

- Overall point cloud density
  - Number of neighbors algorithm
    - Circles of a user defined radius (1 cm) are superimposed throughout the entire model
    - Program counts the number of points within each circle
    - Data output in the form of a histogram
- Photogrammetry point clouds were much more dense than LiDAR point clouds
  - Mandli Communications most likely uses smart technology to limit data gathered
    - Data is gathered at a faster rate at highway speeds than when slowing down or at a stop
    - Limits the amount of redundant data gathered



# Data Evaluation – UAS Asset Management

- LiDAR unable to capture any signs due to limited scanner angle
- Photogrammetry could provide accurate sign locations
  - Sign surfaces not generated well enough to extract measurements
  - Each signs location was captured
- Both technologies accurately mapped surrounding terrains
- Could possibly be used for bridge structural inspections
  - More thorough data review needed



LiDAR model using UAS



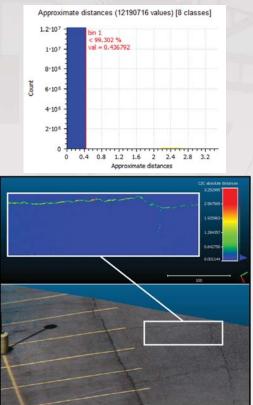
Photogrammetry model using UAS



### Data Evaluation – Pedestrian Access Ramp Inspections

- Computed errors for how much each model deviated from the in-field measurements
  - Lidar
  - Photogrammetry
- Consistency of the results
  - Standard Deviation (SD)
  - Coefficient of Variation (CV)
- Photogrammetry
  - Error 0.32%
  - SD 0.15
  - CV 0.48
- Lidar
  - Error 0.19%
  - SD 0.04
  - CV 0.24

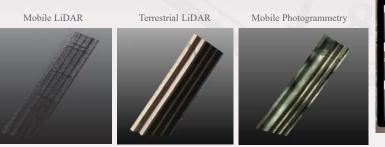
| edestrian Access Ramp Model     | Technology     | Slope Error (%) |
|---------------------------------|----------------|-----------------|
| Down 1                          | Photogrammetry | 0.60            |
| Ramp 1                          | LIDAR          | 0.27            |
| Barra 2                         | Photogrammetry | 0.28            |
| Ramp 2                          | LIDAR          | 0.19            |
|                                 | Photogrammetry | 0.28            |
| Ramp 3                          | LIDAR          | 0.16            |
| D 4                             | Photogrammetry | 0.35            |
| Ramp 4                          | LIDAR          | 0.19            |
| D 5                             | Photogrammetry | 0.24            |
| Ramp 5                          | LIDAR          | 0.18            |
| Dama C                          | Photogrammetry | 0.16            |
| Ramp 6                          | LIDAR          | 0.14            |
| Augrage Error                   | Photogrammetry | 0.32            |
| Average Error                   | LIDAR          | 0.19            |
| Standard Deviation              | Photogrammetry | 0.15            |
| Standard Deviation              | LIDAR          | 0.04            |
| <b>Coefficient of Variation</b> | Photogrammetry | 0.48            |
|                                 | LIDAR          | 0.24            |


. 11

22 of 38

#### THE UNIVERSITY OF UTAH

# Data Evaluation – Pavement Distress


- LiDAR point cloud used as the ground truth model
- Models were registered using ground control points
- On-site measurements indicate the widths of the target pavement crack are in the range of 2-4 cm (0.79-1.57 in)
- Point cloud registration
  - 99.302% of equivalent point pairs have a distance of less than 0.436 cm (0.17 in)
- Histogram index shows a max deviation of 3.25 cm (1.28 in)
  - Red areas
- Majority of crack is color coded with green
  - Image-based point cloud deviates roughly 1cm (0.39 in) from ground truth model



# Data Evaluation – Bridge Inspections

- Photogrammetry unable to capture data on the underside of the bridge due to the cameras field of view
  - Side facing the camera showed details very well
- Mobile & terrestrial LiDAR gathered data regarding the underside and backside of the bridge
  - Calculated the percent error of diaphragm width to span length between the two LiDAR methods
    - 1.29% average deviation of mobile LiDAR to terrestrial LiDAR

|          | Mo             | bile LiD      | AR             | Terrestrial LiDAR |               |                | Percent      |
|----------|----------------|---------------|----------------|-------------------|---------------|----------------|--------------|
| Location | Span<br>Length | Span<br>Width | Ratio<br>(W/L) | Span<br>Length    | Span<br>Width | Ratio<br>(W/L) | Error<br>(%) |
| 1        | 54.84          | 6.72          | 0.1225         | 55.24             | 6.89          | 0.1247         | 1.76         |
| 2        | 54.84          | 6.76          | 0.1233         | 55.24             | 6.79          | 0.1229         | 0.28         |
| 3        | 54.84          | 6.70          | 0.1222         | 55.24             | 6.78          | 0.1227         | 0.46         |
| 4        | 54.84          | 6.72          | 0.1225         | 55.24             | 6.72          | 0.1217         | 0.73         |
| 5        | 54.84          | 6.69          | 0.1220         | 55.24             | 6.90          | 0.1249         | 2.34         |
| 6        | 54.84          | 6.90          | 0.1258         | 55.24             | 6.72          | 0.1217         | 3.43         |
| 7        | 54.84          | 6.78          | 0.1236         | 55.24             | 6.80          | 0.1231         | 0.43         |
| 8        | 54.84          | 6.79          | 0.1238         | 55.24             | 6.82          | 0.1235         | 0.29         |
| 9        | 54.84          | 6.86          | 0.1251         | 55.24             | 6.74          | 0.1220         | 2.52         |
| 10       | 54.84          | 6.85          | 0.1249         | 55.24             | 6.83          | 0.1236         | 1.02         |
| 11       | 54.84          | 6.77          | 0.1235         | 55.24             | 6.88          | 0.1245         | 0.88         |
|          |                |               |                |                   |               | Average        | 1.29         |





26 of 38

THE UNIVERSITY OF UTAH

# Limitations & Challenges

- Largest factor that directly affects point cloud quality is speed
  - Unable to create a good model over 50 MPH
  - Keypoint matching is used to align consecutive photos
  - Keypoint matches begin to decrease after 30 MPH
- Poor lighting conditions are also a challenge
  - Light shining into the sensor can cause poor lighting in frames
  - Light reflecting off of roadway surfaces or signs can cause model errors
- Vehicular obstructions can cause problems
- Photogrammetry point clouds are very large files
  - Downsampling can help manage storage problems



### Limitations & Challenges - Downsampling

NORTH 15

- Original photogrammetry point clouds can be very large
  - Some as large as 30+ GB
- Downsampled each model to see how much quality was lost
  - 100%
  - 75%
  - 50%
  - 25%
- Point cloud visibility is categorized by:
  - Great, Good, Fair, Poor
  - Visibility includes sign visibility as well as pavement and other assets
- Very beneficial to downsample models
  - Retains data accuracy
  - Allows for easier file transfer
  - Reduces the amount of storage needed in office

| WEST 80   | a second                  | ST BO                  | WEST (                 |                        |                        |
|-----------|---------------------------|------------------------|------------------------|------------------------|------------------------|
| Reno      | Nelle I                   |                        |                        | Rens<br>NOT LET        |                        |
| Great (   |                           | Good                   | Fair                   | 14                     | Poor                   |
|           | Effects of D              | ownsampling on Fi      |                        | ,                      |                        |
| Model     |                           | 100%                   | Downsampling<br>75%    | S0%                    | 25%                    |
|           | # of Points               | 351,960,833            | 263,970,625            | 175,980,417            | 25%<br>87,990,208      |
| Model 1   | File Size                 | 11.1 GB                | 263,970,625<br>8.84 GB | 175,980,417<br>5.89 GB | 87,990,208<br>2.94 GB  |
| wodel 1   |                           | Great                  | 8.84 GB<br>Great       | Good                   | 2.94 GB<br>Good        |
|           | Visibility<br># of Points |                        |                        |                        |                        |
| Model 2   | File Size                 | 318,014,773<br>10 GB   | 238,511,080<br>7.99 GB | 159,007,387<br>5.33 GB | 79,503,693<br>2.66 GB  |
| Iviodel 2 | Visibility                | Great                  | 7.99 GB<br>Great       | Good                   | 2.66 GB<br>Good        |
|           | # of Points               |                        |                        |                        |                        |
|           |                           | 770,930,961            | 578,198,221            | 385,465,481            | 192,732,740            |
| Model 3   | File Size<br>Visibility   | 24.4 GB                | 19.3<br>Good           | 12.9 GB<br>Good        | 6.46 GB<br>Fair        |
|           | ,                         | Great                  |                        |                        |                        |
| Model 4   | # of Points<br>File Size  | 714,905,162<br>22,6 GB | 536,178,872<br>17.9 GB | 357,452,581<br>11.9 GB | 178,726,291<br>5,99 GB |
| IVIODEI 4 |                           |                        |                        |                        |                        |
|           | Visibility<br># of Points | Good                   | Good                   | Fair                   | Fair                   |
| Model 5   | File Size                 | 570,359,305<br>19.1 GB | 427,769,479<br>14.3 GB | 285,179,653<br>9.56 GB | 142,589,826<br>4.78 GB |
| woder 5   | Visibility                | Good                   | Good                   | Fair                   | 4.78 GB<br>Poor        |
|           | ,                         |                        |                        | -                      |                        |
| Model 6   | # of Points<br>File Size  | 500,000,000<br>16.7 GB | 375,000,000<br>12.5 GB | 250,000,000<br>8,38 GB | 125,000,000<br>4.19 GB |
| IVIODEI 6 |                           |                        |                        |                        | 4.19 GB<br>Fair        |
|           | Visibility                | Great                  | Good                   | Good                   | Fair                   |

Examples of visibility

28 of 38

THE UNIVERSITY OF UTAH

# Recommendations

#### Asset Management

- Pay close attention to speed
- Drive as slow as traffic allows (best to keep it under 50 MPH)
- Choose the optimal time of day for lighting conditions
  - Early (AM) Drive West or North
  - Later (PM) Drive East or South
- Record in a high number of frames per second
  - May not use all frames for processing
- Downsampling models can play a large factor in easing data storage and data transfer
- Using a powerful processor can help streamline point cloud processing
  - HP Zbook 17, Intel Core I7-7700 HQ, 64 GB of RAM
- Pedestrian Access Ramps
  - Ensure every point in the scene is captured by 3 different views
  - Ensure photos have good overlap with previous and following frames
  - Laser scanner must be perfectly level before scanning
    - Unlevel scanner can cause measurement errors

# Cost & Time Analysis

- Photogrammetry is much more cost effective than LiDAR
  - Photogrammetry
    - GoPro Hero 8+ \$400
    - FujiFilm XT-30 \$1,300
  - DJI Mavic 2 Pro \$1,600
  - Lidar
    - 2 Velodyne HDL-32s \$49,000
    - VX15 Scanner \$140,000
    - Maptek I-Site 8820 \$30,000 (Used)
  - Photogrammetry requires slightly less time for in-field labor
- Photogrammetry requires less storage in the field
  - It requires more storage in the officeDownsampling can help with in-office
  - storage

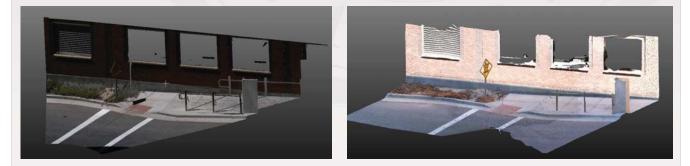
| Case Study                                                        | Technology                 | Equipme<br>nt                                   | Cost of<br>Equipme<br>nt                 | Software                                                         | Cost of Software                                  | In-Field<br>Labor                                    | In-Field<br>Data<br>Storage<br>Requiremen<br>ts | Office Data<br>Storage<br>Requirements |
|-------------------------------------------------------------------|----------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------|
| Photogramm<br>etry<br>Systems for<br>Asset<br>Management<br>LiDAR | GoPro<br>Photogramm Hero 8 |                                                 | Context<br>Capture                       | \$9,100 (First<br>year)<br>+\$1100 (yearly)                      | 5 min<br>equipment                                | ~0.5 GB/Mi                                           | ~                                               |                                        |
|                                                                   | S4                         |                                                 | 3DF<br>Zephyr                            | \$149 (Lite)<br>\$3,200 (Pro)<br>\$4,200 (Aerial)<br>(Perpetual) | - setup +<br>0.04 Man-<br>hr/mi                   | (2.7K @<br>120 FPS)                                  | ~15 GB/Mi                                       |                                        |
|                                                                   | LiDAR                      | 2 *<br>Velodyne<br>HDL-32<br>(x2)               | \$49,000<br>(for two)                    | Roadview<br>Workstatio<br>n                                      | Comes with<br>Mandli<br>Communication<br>services | 1 hr<br>equipment<br>setup +<br>0.036 Man-<br>hr/mi  | ~3 Gb/Mi                                        | ~3 Gb/Mi                               |
|                                                                   | Photogramm<br>etry         | DЛ<br>Mavic 2<br>Pro                            | \$1600                                   | Pix4D                                                            | \$4,990<br>(Perpetual)                            | 0.5 hr<br>equipment<br>setup + 0.4<br>Man-hr/Mi      | ~0.5 GB/Mi                                      | ~2.7 GB/Mi                             |
| Aerial<br>Systems for<br>Asset<br>Management                      | LiDAR                      | DJI<br>M600<br>with<br>VX15<br>LiDAR<br>Scanner | \$6000<br>(Drone)<br>\$140,000<br>(VX15) | Pix4D                                                            | \$4,990<br>(Perpetual)                            | 0.5 hr<br>equipment<br>setup +<br>0.53 Man-<br>hr/Mi | ~1 GB/Mi                                        | ~1 GB/Mi                               |
| Pedestrian<br>Access<br>Ramp                                      | Photogramm                 |                                                 | Context<br>Capture                       | See above                                                        | 0.08 Man-                                         | 300<br>Mb/Ramp                                       |                                                 |                                        |
|                                                                   | etry                       | (18-<br>55mm<br>lens)                           | \$1300                                   | 3DF<br>Zephyr                                                    | See above                                         | hr/Ramp                                              | (30 images,<br>6240x4160)                       | 7.5 GB/Ramp                            |
|                                                                   | LiDAR                      | Maptek I-<br>Site 8820                          | \$30,000<br>(Used)                       | Maptek<br>PointStudio                                            | Included with the<br>purchase of the<br>scanner   | 0.25 Man-<br>hr/Ramp                                 | 545<br>Mb/Ramp                                  | 545 MB/Ramp                            |

30 of 38

#### THE UNIVERSITY OF UTAH

# Summary – Asset Management

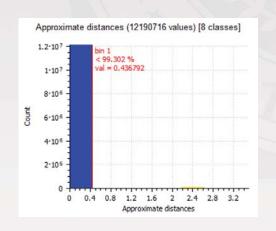
- Lidar
  - Error: 3.48%
  - CV: 0.42
- Photogrammetry
  - Error: 4.33%
  - CV: 0.49
- UAS Lidar
  - Unable to accurately reconstruct sign surfaces
  - Accurately mapped surrounding road terrains
- UAS Photogrammetry
  - Captured accurate sign locations
  - Accurately mapped surrounding road terrains
- 0.85% difference between measured error for both technologies
- LiDAR had a slightly more uniform distribution of points
- Image-based models were much more dense before
  downsampling
- Photogrammetry is much more cost effective

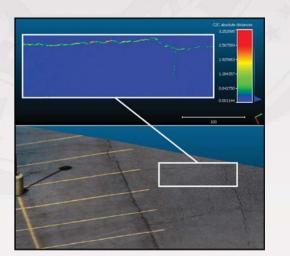







## Summary – Pedestrian Access Ramp Inspections


- Lidar
  - Error: 0.19%
  - CV: 0.24
- Photogrammetry
  - Error: 0.32%
  - CV: 0.48
- 0.13% difference between computed errors
- LiDAR had less deviation in its measurements
- Photogrammetry took less time to gather data on each ramp
  - Could possibly use drones to capture multiple rams




**U** THE UNIVERSITY OF UTAH

## Summary – Pavement Distress Analysis

- 99.302% of points have a distance of less than 0.436 cm (0.17 in)
  - Very accurate alignment
- Maximum deviation of 3.25 cm (1.28 in)
- Photogrammetry model deviates an average of ~1 cm from LiDAR model
- Supplementary case study
  - More research needed for in-depth analysis





### Summary – Bridge Inspections

- Photogrammetry unable to capture data regarding the underside or backside of bridge
- Mobile LiDAR and terrestrial LiDAR captured data regarding under/backside
- 1.29% deviation of mobile LiDAR from terrestrial LiDAR
- Mobile LiDAR & Photogrammetry could be used for asset inventory of bridges, but not bridge inspections



34 of 38

U THE UNIVERSITY OF UTAH

# Summary – Pros & Cons

#### <u>Photogrammetry</u>

- Pros
  - Easy to use
  - Cost Effective
    - \$400 for GoPro Hero 8+
    - \$1,300 for Fujifilm XT-30
    - \$1,600 for DJI Mavic 2 Pro
  - Good accuracy
    - Less than 1% difference from LiDAR
  - Very dense point clouds
  - Visual, colored representation of assets
    - Images are engrained in the models
  - Cons
    - Limited speed of travel
    - Less than 50 MPH
    - Slightly less accurate than LiDAR
    - Model sizes can be hard to process on some systems



### <u>Lidar</u>

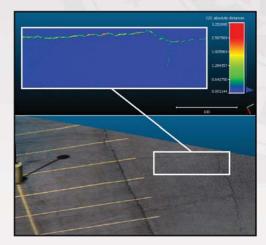
- Very high accuracy
  - Can gather data at higher speeds
  - Mandli can travel up to 65 MPH
- Amount of data collected can be controlled
- Point cloud is generated as the scanner gathers points
- Cons

•Pros

- Very expensive
  - Dual Velodyne HDL-32 \$49,000
  - Maptek I-Site 8820 \$30,000 (used)
  - VX15 \$140,000
- Steep learning curve (required training)
  Must physically mail large amounts of dat
- Must physically mail large amounts of data to processing office



# Conclusion


- Imperative for transportation managers to have up-to-date knowledge of the current state of all assets
  - Requires a quick, efficient, and affordable data collection procedure
- LiDAR is the traditional data acquisition technology
  - High accuracy
  - Very high initial cost
  - Requires technical knowledge of the scanner and software
  - Image-based reconstruction is emerging as a more affordable alternative to LiDAR
    - Slightly lower accuracy than LiDAR (Still very good)
    - Low up-front cost
    - Can be done with a smart phone or digital camera



THE UNIVERSITY OF UTAH

# Conclusion

- Photogrammetry performed nearly as well as LiDAR in both case studies
  - 0.85% difference for Asset Management
  - 0.13% difference for Pedestrian Access Ramp Inspections
- Photogrammetry can be used as an affordable solution to lapses in model generations
  - Mandli collects data regarding state routes every 2 years
- The low cost, ease-of-use, and good accuracy of image-based reconstruction cameras and software makes photogrammetry a very capable technology that may soon be considered as an acceptable alternative to LiDAR
- Where to go from here?





# Acknowledgements

We would like to thank the Mountain Plains Consortium for their support over the duration of this research project.

# TRANSPORTATION LEARNING NETWORK

A partnership with MDT•NDDOT•SDDOT•WYDOT and the Mountain-Plains Consortium Universities

### Thank you for participating!

Please take a moment to complete the evaluation included in the reminder email.

We appreciate your feedback.

### **Contact Information**

Chris Padilla chris.padilla@ndsu.edu (701) 202-5730

Susan Hendrickson susan.Hendrickson@ndsu.edu (701) 238-8646

Shannon Olson shannon.l.olson@ndsu.edu (701) 552-0672

https://tln.learnflex.net https://www.translearning.org

Thank you to our partners:







